共查询到20条相似文献,搜索用时 62 毫秒
1.
为了缓解Web服务推荐中存在的冷启动和数据稀疏问题,以及满足用户个性化的需求,本文提出了基于混杂社会网络的Web服务推荐框架及算法.该网络加入了服务提供者这一元素,可提供更多的真实信息,有助于缓解冷启动问题.根据提出的服务推荐框架,设计了用户-候选服务信任值预测算法(Computing Trust Value,CTV),以及服务推荐算法(Recommend Queue,RQ).在真实数据集上建立实验,结果表明本文提出的方法在预测准确率MAE、RMSE,推荐准确率MAP、NDCG,以及填充率和覆盖率上都有所提高,有助于提升个性化推荐的性能. 相似文献
2.
基于个性化标志物的药物推荐研究,有助于实现个性化用药及推动精准医疗的发展。该文利用基因表达谱数据及蛋白质网络信息,基于基因2维高斯分布方法筛选出个性化网络标志物。进而综合考虑靶基因的重要性和药物的副作用,提出了一种计算药物对个性化标志物影响权重的方法。将该方法应用于肺腺癌、肾透明细胞癌和子宫内膜癌数据集,通过启发式搜索方法,得到每个疾病样本重要药物推荐列表。结果表明,推荐的药物列表在同种癌症不同样本中既存在一致性,也表现出很大的差异性,如药物种类及药物排序差异,这说明个性化药物在疾病治疗中的重要性及必要性。通过从药物数据库中搜索药物组合对疾病治疗的影响作用表明,该文方法筛选得到的许多药物组合对具体疾病治疗具有积极影响,这进一步证明该文基于个性化网络标志物的药物推荐方法的准确性。该文的研究将有效促进精准化医疗的发展。 相似文献
3.
4.
借助于电子商务网站虽然能够给用户们提供比较多的产品以及服务,但是也让用户们寻求符合自身需求的产品信息难度得到了一定程度的提升,为了使得企业自身的市场竞争能力得到提升,也就需要构建一个基于大数据的电子商务个性化信息推荐服务模式,来为用户们提供更加优质的信息服务. 相似文献
5.
6.
可信网络作为互联网安全的重要内容,随着互联网和计算机普及,网络安全越来越受到关注。近年来,随着脆弱性网络安全问题、网络性网络安全问题以及蠕虫传播问题的大力研究,可信网络在凝练、整合上述问题的同时,逐渐成为网络研究的突破点;虚拟化技术作为新型的网络技术,不仅提高了可信网络效用,同时也为可信网络设计、研究、服务提供了更多的便利。本文结合我国面向可信网络研究的虚拟化技术,对可信网络特点、虚拟化可信网络特点以及虚拟化机制VBN进行了简要的探究和阐述。 相似文献
7.
从图书数据资源挖掘、个性化推荐服务的角度出发,利用关联规则数据挖掘与清洗技术、UML建模工具,针对不同图书馆的读者类型、功能或服务需求,建立起智能图书馆个性化推荐服务系统,设置用户管理模块、数据处理模块、热门图书推荐模块、个性化图书推荐模块,完成对不同类别图书资源的检索、挖掘、存储与智能推荐,以取得较为良好的图书咨询与管理、个性化推荐服务效果。 相似文献
8.
9.
10.
《电子技术与软件工程》2016,(18)
对于服务管理与组合来说,服务分类和推荐方法至关重要,本文提出了SOS与服务自动分类方法,探讨了服务推荐方法的实现,并对其应用和平台工具开发进行了实例分析,旨在为相关研究和实践提供参考。 相似文献
11.
12.
《中国邮电高校学报(英文版)》2014
Using the social information among users in recommender system can partly solve the data sparsely problems and significantly improve the performance of the recommendation system. However, the recommendation systems which using the users' social information have two main problems: the explicit user social connection information is not always available in real-world recommender systems, and the user social connection information is directly used in recommender systems when the user explicit social information is available. But as we know that the user social information is not all based on user interest, so this can introduce noise to the recommender systems. This paper proposes a social recommender system model called interest social recommendation (ISoRec). Based on probability matrix factorization (PMF), the model addresses the problems mentioned above by combining user-item rating matrix, explicit user social connection information and implicit user interest social connection information to make more accurately recommendation. In addition, the computational complexity of our algorithm is linear with respect to the number of observed data sets used in this algorithm, and can scalable to very large datasets. 相似文献
13.
针对网络环境中复杂的推荐信息处理问题,提出了一种基于推荐链分类的信任模型。该分类方法基于节点间的诚实属性,在实际经验数据的基础之上能选择出有效的推荐链。针对推荐信息的传播使用了以信息增益为基础的参数,使推荐信息更精准,考虑了时间的影响并且能把交互能力与诚实属性清楚地区分开。在最终的直接信任与推荐信息的聚合计算过程中采用了信息论中熵的概念,摆脱了以往主观设定参数的模糊性。模型中主要的聚合参数能随着交互的进行而不断地修正,达到了最贴近真实值的情形。仿真实验验证了新模型分类的有效性以及参数设置的合理性。 相似文献
14.
15.
16.
《中国邮电高校学报(英文版)》2014
Collaborative filtering algorithms have become one of the most used approaches to provide personalized services for users to deal with abundance of information. The traditional algorithms just use the explicit user-item rating matrix to find similar users or items. To improve the accuracy of the ratings predicted by the collaborative filtering algorithms, social information is widely incorporated into the traditional ones. Different with the existed works focus on directly connected neighbors, we consider the community between the users. We design the algorithms in two aspects: one is that the members in the same community have similar tastes and preferences, the other is that the member's taste is affected by the other members. We simplify these two factors as community similarity and community affection. Community similarity is incorporated into modifying the model-based collaborative filtering algorithm as the social community-based regularization (SCR), which improves 6.2% in mean absolute error (MAE) and 6.1% in root mean square error (RMSE) compared to the existed social recommendation algorithm. Community affection is incorporated into modifying the neighborhood-based collaborative filtering algorithm as the neighbor-based collaborative filtering based on community detection (NCFC) which improve 14.8% in MAE and 8.1% in RMSE compared to user-based collaborative filtering (UCF). 相似文献
17.
In the field of online social networks on user recommendation,researchers extract users’ behaviors as much as possible to model the users.However,users may have different likes and dislikes in different social networks.To tackle this problem,a cross-platform user recommendation model was proposed,users would be modeled all-sided.In this study,the Sina micro blog and the Zhihu were investigated in the proposed model,the experimental results show that the proposed model is competitive.Based on the proposed model and the experimental results,it can be known that modeling users in cross-platform online social networks can describe the user more comprehensively and leads to a better recommendation. 相似文献
18.
高校图书馆图书个性化推荐没有得到很好的推广和实施,一个重要原因是用户对图书的评价不足.因此,提出了一种基于兴趣的高校图书推荐算法.该算法较好地解决了协同过滤算法无法使用和评分不足的问题.同时,将流行与反向流行的特征结合,使其更接近读者的行为.实验表明,该算法优于传统的协同过滤推荐算法,能够满足实际需求. 相似文献
19.
由于信息爆炸问题,如何为用户提供有效的个性化信息服务已得到广泛关注,而随着社交网络的流行及其带来的大量网络群体,如何为群体提供更好的个性化推荐服务也变得越来越重要.文中不仅考虑用户的兴趣偏好,同时利用社会网络分析法(Social Network Analysis,简称SNA)衡量用户之间的社会关系,将此因素融入推荐过程,实验证明此方法能够取得较好的推荐效果. 相似文献