首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an adaptive PI Hermite neural control (APIHNC) system for multi-input multi-output (MIMO) uncertain nonlinear systems. The proposed APIHNC system is composed of a neural controller and a robust compensator. The neural controller uses a three-layer Hermite neural network (HNN) to online mimic an ideal controller and the robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability in the Lyapunov sense. Moreover, a proportional–integral learning algorithm is derived to speed up the convergence of the tracking error. Finally, the proposed APIHNC system is applied to an inverted double pendulums and a two-link robotic manipulator. Simulation results verify that the proposed APIHNC system can achieve high-precision tracking performance. It should be emphasized that the proposed APIHNC system is clearly and easily used for real-time applications.  相似文献   

2.
Chaos control can be applied in the vast areas of physics and engineering systems, but the parameters of chaotic system are inevitably perturbed by external inartificial factors and cannot be exactly known. This paper proposes an adaptive neural complementary sliding-mode control (ANCSC) system, which is composed of a neural controller and a robust compensator, for a chaotic system. The neural controller uses a functional-linked wavelet neural network (FWNN) to approximate an ideal complementary sliding-mode controller. Since the output weights of FWNN are equipped with a functional-linked type form, the FWNN offers good learning accuracy. The robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability in the Lyapunov sense. Without requiring preliminary offline learning, the parameter learning algorithm can online tune the controller parameters of the proposed ANCSC system to ensure system stable. Finally, it shows by the simulation results that favorable control performance can be achieved for a chaotic system by the proposed ANCSC scheme.  相似文献   

3.
The advantage of using cerebellar model articulation control (CMAC) network has been well documented in many applications. However, the structure of a CMAC network which will influence the learning performance is difficult to select. This paper proposes a dynamic structure CMAC network (DSCN) which the network structure can grow or prune systematically and their parameters can be adjusted automatically. Then, an adaptive dynamic CMAC neural control (ADCNC) system which is composed of a computation controller and a robust compensator is proposed via second-order sliding-mode approach. The computation controller containing a DSCN identifier is the principal controller and the robust compensator is designed to achieve L2 tracking performance with a desired attenuation level. Moreover, a proportional–integral (PI)-type adaptation learning algorithm is derived to speed up the convergence of the tracking error in the sense of Lyapunov function and Barbalat’s lemma, thus the system stability can be guaranteed. Finally, the proposed ADCNC system is applied to control a chaotic system. The simulation results are demonstrated that the proposed ADCNC scheme can achieve a favorable control performance even under the variations of system parameters and initial point.  相似文献   

4.
为解决自主水下航行器的变深控制问题,提出一种基于反馈增益的反步控制方法.首先,通过设计控制器参数消除部分非线性项,在保证系统稳定性的同时设计神经网络控制器来补偿纵倾运动中的模型不确定性;然后,通过自适应鲁棒控制器对神经网络的逼近误差予以消除,以加快神经网络的收敛学习速度,神经网络权值和逼近误差估计的学习律可由李雅普诺夫稳定性理论推导得出,保证了闭环系统的一致最终有界性;最后,通过仿真实验验证了所提出方法的有效性.  相似文献   

5.
In the adaptive neural control design, since the number of hidden neurons is finite for real‐time applications, the approximation errors introduced by the neural network cannot be inevitable. To ensure the stability of the adaptive neural control system, a switching compensator is designed to dispel the approximation error. However, it will lead to substantial chattering in the control effort. In this paper, an adaptive dynamic sliding‐mode neural control (ADSNC) system composed of a neural controller and a fuzzy compensator is proposed to tackle this problem. The neural controller, using a radial basis function neural network, is the main controller and the fuzzy compensator is designed to eliminate the approximation error introduced by the neural controller. Moreover, a proportional‐integral‐type adaptation learning algorithm is developed based on the Lyapunov function; thus not only the system stability can be guaranteed but also the convergence of the tracking error and controller parameters can speed up. Finally, the proposed ADSNC system is implemented based on a field programmable gate array chip for low‐cost and high‐performance industrial applications and is applied to control a brushless DC (BLDC) motor to show its effectiveness. The experimental results demonstrate the proposed ADSNC scheme can achieve favorable control performance without encountering chattering phenomena. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

6.
一种可保证瞬态特性的改进的鲁棒模型参考自适应控制   总被引:1,自引:0,他引:1  

针对典型的鲁棒模型参考自适应控制中瞬态性能无法得到保障的问题, 提出一种改进的鲁棒模型参考自适应控制器. 该控制器在标准的鲁棒自适应控制中加入??补偿器, 以抑制闭环自适应系统中参数估计误差和不确定扰动对系统输出跟踪性能造成的不利影响. 理论分析和仿真验证表明, 所提出的控制器不但保留了典型鲁棒模型参考自适应控制的理想特性, 并且通过设计适当的??∞ 补偿器使得闭环系统的瞬态性得到了较大的改善, 其改善的程度依赖于??∞ 补偿器性能指标的大小.

  相似文献   

7.
This paper proposes an intelligent complementary sliding-mode control (ICSMC) system which is composed of a computed controller and a robust controller. The computed controller includes a neural dynamics estimator and the robust compensator is designed to prove a finite L2-gain property. The neural dynamics estimator uses a recurrent neural fuzzy inference network (RNFIN) to approximate the unknown system term in the sense of the Lyapunov function. In traditional neural network learning process, an over-trained neural network would force the parameters to drift and the system may become unstable eventually. To resolve this problem, a dead-zone parameter modification is proposed for the parameter tuning process to stop when tracking performance index is smaller than performance threshold. To investigate the capabilities of the proposed ICSMC approach, the ICSMC system is applied to a one-link robotic manipulator and a DC motor driver. The simulation and experimental results show that favorable control performance can be achieved in the sense of the L2-gain robust control approach by the proposed ICSMC scheme.  相似文献   

8.
This paper proposes an adaptive recurrent neural network control (ARNNC) system with structure adaptation algorithm for the uncertain nonlinear systems. The developed ARNNC system is composed of a neural controller and a robust controller. The neural controller which uses a self-structuring recurrent neural network (SRNN) is the principal controller, and the robust controller is designed to achieve L 2 tracking performance with desired attenuation level. The SRNN approximator is used to online estimate an ideal tracking controller with the online structuring and parameter learning algorithms. The structure learning possesses the ability of both adding and pruning hidden neurons, and the parameter learning adjusts the interconnection weights of neural network to achieve favorable approximation performance. And, by the L 2 control design technique, the worst effect of approximation error on the tracking error can be attenuated to be less or equal to a specified level. Finally, the proposed ARNNC system with structure adaptation algorithm is applied to control two nonlinear dynamic systems. Simulation results prove that the proposed ARNNC system with structure adaptation algorithm can achieve favorable tracking performance even unknown the control system dynamics function.  相似文献   

9.

In this paper, the global adaptive neural control with finite-time (FT) convergence learning performance for a general class of nonlinear robot manipulators has been investigated. The scheme proposed in this paper offers a subtle blend of neural controller with robust controller, which palliates the limitation of neural approximation region to ensure globally uniformly ultimately bounded (GUUB) stability by integrating a switching mechanism. Morever, the proposed scheme guarantees the estimated neural weights converging to optimal values in finite time by embedding an adaptive learning algorithm driven by the estimated weights error. The optimal weights obtained through the learning process of the neural networks (NNs) will be reused next time for repeated tasks, and can thus reduce computational load, improve transient performance and enhance robustness. The simulation studies have been carried out to demonstrate the superior performance of the controller in comparison to the conventional methods.

  相似文献   

10.
Though the control performances of the fuzzy neural network controller are acceptable in many previous published papers, the applications are only parameter learning in which the parameters of fuzzy rules are adjusted but the number of fuzzy rules should be determined by some trials. In this paper, a Takagi–Sugeno-Kang (TSK)-type self-organizing fuzzy neural network (TSK-SOFNN) is studied. The learning algorithm of the proposed TSK-SOFNN not only automatically generates and prunes the fuzzy rules of TSK-SOFNN but also adjusts the parameters of existing fuzzy rules in TSK-SOFNN. Then, an adaptive self-organizing fuzzy neural network controller (ASOFNNC) system composed of a neural controller and a smooth compensator is proposed. The neural controller using the TSK-SOFNN is designed to approximate an ideal controller, and the smooth compensator is designed to dispel the approximation error between the ideal controller and the neural controller. Moreover, a proportional-integral (PI) type parameter tuning mechanism is derived based on the Lyapunov stability theory, thus not only the system stability can be achieved but also the convergence of tracking error can be speeded up. Finally, the proposed ASOFNNC system is applied to a chaotic system. The simulation results verify the system stabilization, favorable tracking performance, and no chattering phenomena can be achieved using the proposed ASOFNNC system.  相似文献   

11.
In this study, a robust adaptive control (RAC) system is developed for a class of nonlinear systems. The RAC system is comprised of a computation controller and a robust compensator. The computation controller containing a radial basis function (RBF) neural network is the principal controller, and the robust compensator can provide the smooth and chattering-free stability compensation. The RBF neural network is used to approximate the system dynamics, and the adaptive laws are derived to on-line tune the parameters of the neural network so as to achieve favorable estimation performance. From the Lyapunov stability analysis, it is shown that all signals in the closed-loop RBAC system are uniformly ultimately bounded. To investigate the effectiveness of the RAC system, the design methodology is applied to control two nonlinear systems: a wing rock motion system and a Chua’s chaotic circuit system. Simulation results demonstrate that the proposed RAC system can achieve favorable tracking performance with unknown of the system dynamics.  相似文献   

12.
A robust neural controller for underwater robot manipulators   总被引:1,自引:0,他引:1  
Presents a robust control scheme using a multilayer neural network with the error backpropagation learning algorithm. The multilayer neural network acts as a compensator of the conventional sliding mode controller to improve the control performance when initial assumptions of uncertainty bounds of system parameters are not valid. The proposed controller is applied to control a robot manipulator operating under the sea which has large uncertainties such as the buoyancy, the drag force, wave effects, currents, and the added mass/moment of inertia. Computer simulation results show that the proposed control scheme gives an effective path way to cope with those unexpected large uncertainties.  相似文献   

13.
In the conventional CMAC-based adaptive controller design, a switching compensator is designed to guarantee system stability in the Lyapunov stability sense but the undesirable chattering phenomenon occurs. This paper proposes a CMAC-based smooth adaptive neural control (CSANC) system that is composed of a neural controller and a saturation compensator. The neural controller uses a CMAC neural network to online mimic an ideal controller and the saturation compensator is designed to dispel the approximation error between the ideal controller and neural controller without any chattering phenomena. The parameter adaptive algorithms of the CSANC system are derived in the sense of Lyapunov stability, so the system stability can be guaranteed. Finally, the proposed CSANC system is applied to a Chua’s chaotic circuit and a DC motor driver. Simulation and experimental results show the CSANC system can achieve a favorable tracking performance. It should be emphasized that the development of the proposed CSANC system doesn’t need the knowledge of the system dynamics.  相似文献   

14.
The structure of a neural network is determined by time-consuming trial-and-error tuning procedure in advance for the reason that it is difficult to consider the balance between the neuron number and the desired performance. To attack this problem, a self-evolving functional-linked wavelet neural network (SFWNN) is proposed. Without the need for preliminary knowledge, a self-evolving approach demonstrates that the properties of generating and pruning the hidden neurons automatically. Then, an adaptive self-evolving functional-linked wavelet neural control (ASFWNC) system which is composed of a neural controller and a supervisory compensator is proposed. The neural controller uses a SFWNN to online estimate an ideal controller and the supervisory compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability in the Lyapunov sense. To investigate the capabilities of the proposed ASFWNC approach, it is applied to a chaotic system and a DC motor. The simulation and experimental results show that favorable control performance can be achieved by the proposed ASFWNC scheme.  相似文献   

15.
This paper proposes a new variable structure controller combined with a multilayer neural network using an error back-propagation learning algorithm. The neural network acts as a compensator for a conventional variable structure controller in order to improve the control performance when the initial assumptions of the uncertainty bounds of the system parameters are violated. Also, the proposed controller can reduce the steady-state error of a conventional variable structure controller using the boundary layer technique. Computer simulation results show that the proposed method is effective in controlling dynamic systems with unexpected large uncertainties.  相似文献   

16.
This study proposes an indirect adaptive self-organizing RBF neural control (IASRNC) system which is composed of a feedback controller, a neural identifier and a smooth compensator. The neural identifier which contains a self-organizing RBF (SORBF) network with structure and parameter learning is designed to online estimate a system dynamics using the gradient descent method. The SORBF network can add new hidden neurons and prune insignificant hidden neurons online. The smooth compensator is designed to dispel the effect of minimum approximation error introduced by the neural identifier in the Lyapunov stability theorem. In general, how to determine the learning rate of parameter adaptation laws usually requires some trial-and-error tuning procedures. This paper proposes a dynamical learning rate approach based on a discrete-type Lyapunov function to speed up the convergence of tracking error. Finally, the proposed IASRNC system is applied to control two chaotic systems. Simulation results verify that the proposed IASRNC scheme can achieve a favorable tracking performance.  相似文献   

17.
Recurrent wavelet neural network (RWNN) has the advantages in its dynamic responses and information storing ability. This paper develops a recurrent wavelet neural backstepping control (RWNBC) scheme for multiple-input multiple-output (MIMO) mechanical systems. This proposed RWNBC comprises a neural controller and a smooth compensator. The neural controller using an RWNN is the principal tracking controller utilized to mimic an ideal backstepping control law; and the parameters of RWNN are online tuned by the derived adaptation laws from the Lyapunov stability theorem. The smooth compensator is designed to dispel the approximation error introduced by the neural controller, so that the asymptotic stability of the closed-loop system can be guaranteed. Finally, two MIMO mechanical systems, a mass-spring-damper system and a two-inverted pendulum system, are performed to verify the effectiveness of the proposed RWNBC scheme. From the simulation results, it is verified that the proposed RWNBC scheme can achieve favorable tracking performance without any chattering phenomenon.  相似文献   

18.
In this paper, a voice coil motor (VCM) featuring fast dynamic performance and high position repeatability is developed. To achieve robust VCM control performance under different operating conditions, an on-line constructive fuzzy sliding-mode control (OCFSC) system, which comprises of a main controller and an exponential compensator, is proposed. In the main controller, a fuzzy observer is used to on-line approximate the unknown nonlinear term in the system dynamics with on-line structure learning and parameter learning using a gradient descent algorithm. According to the structure learning mechanism, the fuzzy observer can either increase or decrease the number of fuzzy rules based on tracking performance. The exponential compensator is applied to ensure the system stability with a nonlinear exponential reaching law. Thus, the chattering signal can be alleviated and the convergence of tracking error can be speed up. Finally, the experimental results show that not only the OCFSC system can achieve good position tracking accuracy but also the structure learning ability enables the fuzzy observer to evolve its structure on-line.  相似文献   

19.
To reduce the adverse effects on the control performance and disturbance rejection caused by system uncertainty, a novel internal model based robust inversion feedforward and feedback 2DOF control approach was proposed for LPV system with disturbance. The proposed control approach combines the internal model control and robust inversion based 2DOF control, it utilizes internal model based control to reject external disturbance, utilizes robust inversion 2DOF control to enhance the control resolution and guarantee the system control performance. At first, a LMI synthesis approach for LPV system model identification and a disturbance compensator optimization design method which could minimize H norm of output error caused by disturbance are presented. Then, combined with internal loop for disturbance compensation, a robust inversion feedforward controller is designed by robust inversion approach and the feedback controller which could render the requirements of reference signal tracking performance and robustness satisfied is obtained by the H mixed sensitivity synthesis approach. Finally, atomic force microscopy (AFM) vertical positioning simulation experiments are conducted and the experiment results showed that the proposed control approach could achieve better output performance and disturbance rejection compared with conventional internal model based control and robust inversion based 2DOF control approach.  相似文献   

20.
为克服现有近似最优跟踪控制方法只能跟踪连续可微参考输入的局限,本文针对一类具有未知动态的连续时间非线性时不变仿射系统,提出了一种新的基于自适应动态规划的鲁棒近似最优跟踪控制方法.首先采用递归神经网络建立系统模型,然后建立评价神经网络对最优性能指标进行估计,从而得到最优性能指标偏导数的估计值,进而得到近似最优跟踪控制器,最后利用系统输出与参考输入之间的跟踪误差设计鲁棒项对神经网络建模误差进行补偿.分别针对两个非线性系统进行仿真实验,仿真结果表明了所提方法的有效性和优越性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号