首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
无逆矩阵极限学习机只能以批量学习方式进行训练,将其拓展为无逆矩阵在线学习版本,提出了无逆矩阵在线序列极限学习机算法(IOS-ELM)。所提算法增加训练样本时,利用Sherman Morrison Woodbury公式对新增样本数据后的模型进行更新,直接计算出新增隐含层输出权重,避免对已经分析过的训练样本的输出权重进行重复计算。给出了所提IOS-ELM算法的详细推导过程。在不同类型和大小的数据集上的实验结果表明,所提IOS-ELM算法非常适合在线方式逐步生成的数据集,在快速学习和性能方面都有很好的表现。  相似文献   

2.
针对较强噪声环境下的滚动轴承故障预测问题,为提高轴承故障预测的精度,提出并研究了一种新的滚动轴承预测技术;采用将灰色模型和极限学习机(ELM)相结合的方法,针对轴承运行状态值的非线性特点,先将样本数据进行灰色处理,解决数据的随机性和波动性问题,然后代入学习速度快,泛化精度高的ELM神经网络进行训练;在训练完毕后,对未来的轴承运行状态数据进行分析,将其与轴承设备的理论诊断标准相比较以达到故障预测的目的。  相似文献   

3.
董红斌  逄锦伟  韩启龙 《计算机科学》2015,42(5):78-81, 105
预测是一种根据已知数据在过去一定时间段内呈现出的发展的规律性对未来发展趋势进行描述的行为.近年来,预测被应用到很多领域,如电价预测、股票价格预测和气象预测等.然而传统的预测方法由于其精度不高或速度不快等问题,无法满足当今预测领域的需求.针对传统预测方法存在的问题,基于组合预测的思想,结合强化学习的累积函数的概念,提出了结合灰色预测模型和极限学习机的组合预测方法.算法在微软股票信息、Mackey-Glass时间序列数据和台湾液晶屏制造业的制造数据等实验数据集上进行了相关实验,结果表明该算法是有效的.  相似文献   

4.
《软件》2018,(2):191-196
使用传统的物理化学方法来预测锂电池的健康状态效率低下且精度不高。为此,本文提出使用极限学习机来对蓄电池的健康状态进行预测。首先对提取出的特征数据集进行归一化预处理;然后,在训练集上使用网格搜索技术优化极限学习机的模型参数。在测试集上和其他方法的对比实验结果表明:基于极限学习机的锂电池健康状态预测方法性能优秀,有着实际应用的前景。  相似文献   

5.
针对在线学习中极限学习机需要事先确定模型结构的问题,提出了兼顾数据增量和结构变化的在线极限学习机算法。算法于在线序列化极限学习机的基础上,通过误差变化判断是否新增节点,并利用分块矩阵的广义逆矩阵对新增节点后的模型进行更新,使模型保持较高正确率。通过在不同类型和大小的数据集上的实验表明,所提算法相较于经典极限学习机及其在线和增量学习版本都具有较好的分类和回归准确率,能够适应不同类型的数据分析任务。  相似文献   

6.
使用极限学习机(ELM)的方法进行图像分割问题研究。针对传统图像分割方法中存在着结构设计复杂、所需时间较长、造成图像分割分辨率低,清晰度不高等问题,提出了一种基于极限学习机的图像分割算法。在确定了最优参数的基础上,建立了基于ELM的图像分割算法。最后仿真实验证明本文提出的算法能快速有效的分割图像,图像分割孤立点少,边缘明显,同时该算法大大的缩短了样本的训练时间。  相似文献   

7.
针对目前输电线路覆冰厚度预测模型训练时间长,预测精度效果不佳等问题,引入学习速度快、泛化性能好、调节参数少的极限学习机,提出了基于极限学习机的覆冰预测方法,并把极限学习机同传统的几种神经网络算法进行了预测模型性能对比.实验结果表明,基于极限学习的输电线路覆冰预测方法在精度与时间花销上表现更好.  相似文献   

8.
针对单一软件可靠性模型适应性不强和数据驱动模型稳定性较差的问题,本文选取3种典型软件可靠性模型作为基模型,利用极限学习机对基模型的预测结果进行加权优化,得到组合软件可靠性模型,实现经典软件可靠性模型和人工智能算法的有机结合。通过对3组失效数据进行仿真实验,并与单一模型、基于其他神经网络算法的组合模型以及数据驱动模型的预测结果进行对比,验证了本文模型能够有效地提升预测精度和模型的适应性。  相似文献   

9.
灰色神经网络在粮食产量预测中的应用   总被引:8,自引:0,他引:8  
林芳 《计算机仿真》2012,(4):225-228,267
研究粮食准确预测优化问题,粮食产量受到多种因素影响,同时具有复杂的非线性和随机性特点,传统单一模型难准确对其变化规律进行准确描述,预测精度较低。为提高粮食产量预测精度,提出一种将灰色理论和BP神经网络相结合的粮食产量预测模型。首先采用灰色GM(1,1)预测模型动态预测粮食产量变化趋势,然后运用BP神经网络对灰色GM(1,1)模型预测结果进行修正,以提高粮食产量预测精度。采用1978-2008年我国粮食产量数据对预测模型性能进行仿真测试,仿真结果表明,组合预测模型提高了粮食产量的预测精度,更能描述粮食产量变化规律,为粮食产量准确预测提供了一种有效研究方法。  相似文献   

10.
极限学习机(ELM)是一种新型单馈层神经网络算法,在训练过程中只需要设置合适的隐藏层节点个数,随机赋值输入权值和隐藏层偏差,一次完成无需迭代.结合遗传算法在预测模型参数寻优方面的优势,找到极限学习机的最优参数取值,建立成都双流国际机场旅客吞吐量预测模型,通过对比支持向量机、BP神经网络,分析遗传-极限学习机算法在旅客吞吐量预测中的可行性和优势.仿真结果表明遗传-极限学习机算法不仅可行,并且与原始极限学习机算法相比,在预测精度和训练速度上具有比较明显的优势.  相似文献   

11.
极限学习机在岩性识别中的应用   总被引:3,自引:0,他引:3  
基于传统支持向量机(SVM)训练速度慢、参数选择难等问题,提出了基于极限学习机(ELM)的岩性识别.该算法是一种新的单隐层前馈神经网络(SLFNs)学习算法,不但可以简化参数选择过程,而且可以提高网络的训练速度.在确定了最优参数的基础上,建立了ELM的岩性分类模型,并且将ELM的分类结果与SVM进行对比.实验结果表明,ELM以较少的神经元个数获得与SVM相当的分类正确率,并且ELM参数选择比SVM简便,有效降低了训练速度,表明了ELM应用于岩性识别的可行性和算法的有效性.  相似文献   

12.
为了提高网络流量预测准确性,结合网络流量的变化特点,针对当前网络流量预测模型存在的局限性,设计了基于小波变换和极限学习机的网络流量预测模型。首先分析了当前国内外网络流量预测研究现状,找到引起网络流量预测准确性差的原因;然后采用小波变换对原始网络流量时间序列进行去噪,得到无噪声的网络流量时间序列;最后采用极限学习机对网络流量时间序列进行建模,得到相应的预测结果。与当前经典的网络流量预测模型在相同环境下进行对照测试,测试结果分析表明,小波变换和极限学习机的网络流量预测精度达到了95%以上,网络流量预测误差得到了有效的控制,而且提升了网络流量预测效率,预测结果要远优于当前经典的网络流量预测模型。  相似文献   

13.
针对极限学习机(ELM)中隐藏层到输出层存在误差的问题,通过分析发现误差来源于求解隐藏层输出矩阵H的Moore-Penrose广义逆矩阵Η?的过程,即矩阵H?H与单位矩阵有偏差,可根据偏差的程度来选择合适的输出矩阵H以获得较小的训练误差.根据广义逆矩阵和辅助矩阵的定义,首先确定了目标矩阵H?H和误差指标L21范数,其次...  相似文献   

14.
极限学习机( Extreme Learning Machine , ELM)是一种新型的单馈层神经网络算法,克服了传统的误差反向传播方法需要多次迭代,算法的计算量和搜索空间大的缺点,只需要设置合适的隐含层节点个数,为输入权和隐含层偏差进行随机赋值,一次完成无需迭代。研究表明股票市场是一个非常复杂的非线性系统,需要用到人工智能理论、统计学理论和经济学理论。本文将极限学习机方法引入股票价格预测中,通过对比支持向量机( Support Vector Machine , SVM)和误差反传神经网络( Back Propagation Neural Network , BP神经网络),分析极限学习机在股票价格预测中的可行性和优势。结果表明极限学习机预测精度高,并且在参数选择及训练速度上具有较明显的优势。  相似文献   

15.
为提高泥石流预测预报的准确性,提出一种基于DBSCAN聚类的改进极限学习机(ELM)算法。首先,利用DBSCAN算法对泥石流发生训练的数据进行聚类处理;其次,将聚类得到的不同训练集分类训练ELM分类器;最后,利用ELM分类器对预测集数据进行预测。实验结果表明,利用改进ELM算法对泥石流发生预测的平均准确率达到91.6%,改进ELM算法的稳定性与传统ELM算法相比有明显提高,与传统ELM算法、BP神经网络和Fisher预测法相比,改进ELM算法的预测精度更高。  相似文献   

16.
由于时间效率的约束,多元时间序列预测算法往往存在预测准确率不足的问题.对此,提出基于图拉普拉斯变换和极限学习机的时间序列预测算法.基于图拉普拉斯变换对时间序列进行半监督的特征提取,通过散布矩阵将监督特征和无监督特征进行融合.设计在线的极限学习机学习算法,仅需要在线更新网络的输出权重矩阵即可完成神经网络的学习.利用提取的...  相似文献   

17.
基于改进BP神经网络对江苏省粮食产量的仿真预测   总被引:1,自引:0,他引:1  
该文分析了传统BP神经网络收敛速度慢的原因,提出了一种BP神经网络的改进算法,在此基础上建立了时间序列对象的粮食产量预测模型,并运用Matlab对江苏省粮食产量进行了预测,仿真测试结果证明了该方法可行,具有实用性。  相似文献   

18.
骨髓细胞的分类有重要的医学诊断意义。先对骨髓细胞图像分割和特征提取,用提取出来的训练集对极限学习机训练,再用该分类器对未知样本识别。针对单个分类器性能的不稳定,提出基于元胞自动机的极限学习机集成算法。通过元胞自动机抽样策略构建差异大的训练子集,多个分类器并行学习,多数投票法联合决策。实验结果表明,与BP、支持向量机比较,该算法基本无参数调整,学习速度快,分类精度高能达到97.33%,且有效克服了神经网络分类器不稳定的缺点。  相似文献   

19.
针对在线贯序极限学习机(OS-ELM)算法隐含层输出不稳定、易产生奇异矩阵和在线贯序更新时没有考虑训练样本时效性的问题,提出一种基于核函数映射的正则化自适应遗忘因子(FFOS-RKELM)算法.该算法利用核函数代替隐含层,能够产生稳定的输出结果.在初始阶段加入正则化方法,通过构造非奇异矩阵提高模型的泛化能力;在贯序更新阶段,通过新到的数据自动更新遗忘因子.将FFOS-RKELM算法应用到混沌时间序列预测和入口氮氧化物时间序列预测中,相比于OS-ELM、FFOS-RELM、OS-RKELM算法,可有效地提高预测精度和泛化能力.  相似文献   

20.
为了对股票价格进行准确、快速的在线预测,提出一种基于改进极限学习机算法(IELM)的股票价格在线预测模型。在极限学习机(ELM)中引入Cholesky分解方法,使网络权值随新样本的逐次加入递推更新,提高模型的泛化能力,加快网络学习效率,然后对交通银行股票(601328)的收盘价进行仿真实验。结果表明,相对于对比模型,IELM不仅提高了计算效率,而且提高了股票价格预测精度,可以实现股票价格快速、准确在线预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号