共查询到20条相似文献,搜索用时 0 毫秒
1.
郐媛媛 《计算机光盘软件与应用》2014,(9):302-303
文本相似度算法研究一直是文本挖掘领域非常重要的算法,指采用一定的策略比较两个文本之间的相似程度,目前文本相似度算法已经在文本分类、文本聚类、自然语言处理等多个领域崭露头角。本文主要就语义角度出发对文本之间相似度进行界定。 相似文献
2.
利用《知网》计算词语的语义相似度,通过提取关键词进行文本相似度计算.将文本分词并过滤停用词后,结合词语的词性、词频和段频计算词语的权值,以便提取文本的关键词,通过计算关键词之间的相似度来计算文本之间的相似度值.实验结果与对比值进行差异显著性分析表明,本文提出的方法相比传统的语义算法和向量空间模型算法,其精确性有了进一步的提高. 相似文献
3.
计算文本相似度常用基于向量空间计算夹角余弦的方法,该方法忽视了同一文本中词与词之间的语义相似度,因而造成了文本表示模型的高维性以及计算的高复杂性。为此,提出了一种文本相似度算法,利用HNC理论先计算特征词之间的语义相似度,进行必要的降维,进一步计算每个文本向量中的TF*IDF值,最后计算两个向量的空间夹角余弦值并将其作为两个文本之间的相似度。将实验结果与直接计算余弦值的结果比较发现,改进后的算法中VSM的维数明显比改进前小得多,改进后的算法提高了召回率和准确率。因此,改进后的算法是切实有效的。 相似文献
4.
词汇间的语义相似度计算在自然语言处理相关的许多应用中有基础作用。该文提出了一种新的计算方法,具有高效实用、准确率较高的特点。该方法从传统的分布相似度假设“相似的词汇出现在相似的上下文中”出发,提出不再采用词汇在句子中的邻接词,而是采用词汇在二词名词短语中的搭配词作为其上下文,将更能体现词汇的语义特征,可取得更好的计算结果。在自动构建大规模二词名词短语的基础上,首先基于tf-idf构造直接和间接搭配词向量,然后通过计算搭配词向量间的余弦距离得到词汇间的语义相似度。为了便于与相关方法比较,构建了基于人工评分的中文词汇语义相似度基准测试集,在该测试集中的名、动、形容词中,方法分别得到了0.703、0.509、0.700的相关系数,及100%的覆盖率。 相似文献
5.
一种基于上下文的语义相似度算法 总被引:2,自引:0,他引:2
本体中概念映射的关键是概念相似度计算.本文针对目前概念相似度计算所存在的问题,提出了一种基于上下文的计算本体内概念间语义相似度的算法,从概念的父代和子代两个角度进行计算.该算法充分考虑了概念所处的具体应用环境,利用了本体中概念的语义信息.实验结果表明,基于上下文的语义相似度算法比单纯地计算概念闻语义相似度更有效. 相似文献
6.
对语义相似度的研究,已产生了许多计算模型和计算方法.这些模型和方法大多集中于简单词汇之间的相似度计算,很少有涉及两个或多个词汇组合的相似度计算.在本体匹配与服务发现的过程中,与本体有关的概念不可避免的会出现由两个或多个词汇组合成的组合词汇.在WordNet相似度计算基础上,综合考虑了词汇间的各类相似度,提出了一种计算组合词汇的语义相似度的方法.实验表明,该方法能有效提升相似度计算的有效性和准确性. 相似文献
7.
8.
孙滨刘林 《计算机与数字工程》2014,(2):187-189,209
论文提出一个基于语义的文本间的相似度算法,以文本的特征词相似度为基础,来计算文本间的相似度,利用聚类算法对文本簇进行聚类.实验结果证明基于知网的文本语义相似度方法在对文本相似度计算以及文本聚类方面,能有效提高聚类的效果. 相似文献
9.
10.
基于语义网的语义相似度算法改进 总被引:16,自引:4,他引:16
传统的语义相似度算法采用纯语义距离或以本体库的统计特性为基础。论文的改进算法把这两者结合起来,互为约束,并且加入了“深度”和“密度”对语义距离的辅助影响。改变语义相关性的比重只需调节算法中的一个参数。最后通过WordNet构造的局部语义树,比较了各算法的有效性。 相似文献
11.
12.
13.
14.
15.
根据各分布信息源信息单元实体类的语义相似度,对于信息单元实体类进行聚类,是半自动地进行本体映射、构建分布异构信息资源全局视图的重要步骤。本文面向分布信息资源统一信息视图构建需求,利用基于本体的元数据模型及语义相似度,在其基础上定义了语义聚类特征,基于语义聚类特征设计了一种基于语义特征树的混合层次聚类算法SCFBHCA。从理论和实验两个角度对SCFBHCA算法进行了分析,对比HCA和HCP,该算法具有增量式和扩展性且效率更高。 相似文献
16.
《计算机应用与软件》2016,(10)
在基于距离的语义相似度计算方法的基础上,综合多种因素对相似度的影响,提出一种新的相似度和相关度计算方法。将其应用到教学资源领域本体,计算本体概念间的相似度和相关度。实验结果显示该算法可以提高传统基于距离的相似度算法的性能。最后比较了利用该算法的语义查询与传统关键字查询的结果。 相似文献
17.
由于目前检索技术效率低下,所以需要一种基于本体的检索技术来提高效率。语义相似度计算是基于本体的检索技术的一个关键问题。本文对已有语义相似度计算方法进行总结并改进,最后对其进辑分析 相似文献
18.
基于本体和相似图的概念语义相似度计算 总被引:1,自引:1,他引:1
概念语义相似度计算的研究是人工智能最基础和最重要的课题之一,借鉴现有的概念建模思想和工具,提出一种综合的计算形式概念分析中概念间语义相似度的算法.通过分析传统的计算方法,对存在的问题进行改进,结合领域本体和FCA的思想,通过相似图和候选属性对集合等定义计算FCA中概念间的语义相似度.应用实例的结果表明计算结果与人类的主观判断基本一致.文中的方法对概念间语义相似度计算是可行的,使用该方法可以获取在语义上和用户请求最接近的结果. 相似文献
19.
将传统的文本相似度量方法直接移植到短文本时,由于短文本内容简短的特性会导致数据稀疏而造成计算结果出现偏差。该文通过使用复杂网络表征短文本,提出了一种新的短文本相似度量方法。该方法首先对短文本进行预处理,然后对短文本建立复杂网络模型,计算短文本词语的复杂网络特征值,再借助外部工具计算短文本词语之间的语义相似度,然后结合短文本语义相似度定义计算短文本之间的相似度。最后在基准数据集上进行聚类实验,验证本文提出的短文本相似度计算方法在基于F-度量值标准上,优于传统的TF-IDF方法和另一种基于词项语义相似度的计算方法。 相似文献
20.
为了改善文本聚类的质量,得到满意的聚类结果,针对文本聚类缺少涉及概念的内涵及概念间的联系,提出了一种基于本体相似度计算的文本聚类算法TCBO(Text Clustering Based on Ontology).该算法把文档用本体来刻画,以便描述概念的内涵及概念间的联系.设计和改进了文本相似度计算算法,应用本体的语义相似度来度量文档间相近程度,设计了具体的根据相似度进行文本聚类的算法.实验证明,该方法从聚类的准确性和聚类的关联度方面改善了聚类质量. 相似文献