首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 226 毫秒
1.
Through proteolysis and peptide mass determination using mass spectrometry, a peptide mass map (PMM) can be generated for protein identification. However, insufficient peptide mass accuracy and protein sequence coverage limit the potential of the PMM approach for high-throughput, large-scale analysis of proteins. In our novel approach, nonlabile protons in particular amino acid residues were replaced with deuteriums to mass-tag proteins of the S. cerevisiae proteome in a sequence-specific manner. The resulting mass-tagged proteolytic peptides with characteristic mass-split patterns can be identified in the data search using constraints of both amino acid composition and mass-to-charge ratio. More importantly, the mass-tagged peptides can further act as internal calibrants with high confidence in a PMM to identify the parent proteins at modest mass accuracy and low sequence coverage. As a result, the specificity and accuracy of a PMM was greatly enhanced without the need for peptide sequencing or instrumental improvements to obtain increased mass accuracy. The power of PMM has been extended to the unambiguous identification of multiple proteins in a 1D SDS gel band including the identification of a membrane protein.  相似文献   

2.
Gu S  Pan S  Bradbury EM  Chen X 《Analytical chemistry》2002,74(22):5774-5785
Here, we describe a method for protein identification and de novo peptide sequencing. Through in vivo cell culturing, the deuterium-labeled lysine residue (Lys-d4) introduces a 4-Da mass tag at the carboxyl terminus of proteolytic peptides when cleaved by certain proteases. The 4-Da mass difference between the unlabeled and the deuterated lysine assigns a mass signature to all lysine-containing peptides in any pool of proteolytic peptides for protein identification directly through peptide mass mapping. Furthermore, it was used to distinguish between N- and C-terminal fragments for accurate assignments of daughter ions in tandem MS/MS spectra for sequence assignment. This technique simplifies the labeling scheme and the interpretation of the MS/MS spectra by assigning different series of fragment ions correctly and easily and is very useful in de novo peptide sequencing. We have also successfully implemented this approach to the analysis of protein mixtures derived from the human proteome.  相似文献   

3.
We describe the first implementation of negative electron-transfer dissociation (NETD) on a hybrid ion trap-orbitrap mass spectrometer and its application to high-throughput sequencing of peptide anions. NETD, coupled with high pH separations, negative electrospray ionization (ESI), and an NETD compatible version of OMSSA, is part of a complete workflow that includes the formation, interrogation, and sequencing of peptide anions. Together these interlocking pieces facilitated the identification of more than 2000 unique peptides from Saccharomyces cerevisiae representing the most comprehensive analysis of peptide anions by tandem mass spectrometry to date. The same S. cerevisiae samples were interrogated using traditional, positive modes of peptide LC-MS/MS analysis (e.g., acidic LC separations, positive ESI, and collision activated dissociation), and the resulting peptide identifications of the different workflows were compared. Due to a decreased flux of peptide anions and a tendency to produce lowly charged precursors, the NETD-based LC-MS/MS workflow was not as sensitive as the positive mode methods. However, the use of NETD readily permits access to underrepresented acidic portions of the proteome by identifying peptides that tend to have lower pI values. As such, NETD improves sequence coverage, filling out the acidic portions of proteins that are often overlooked by the other methods.  相似文献   

4.
Proteolytic peptide mass mapping as measured by mass spectrometry provides a major approach for the identification of proteins. A protein is usually identified by the best match between the measured and calculated m/z values of the proteolytic peptides. A unique identification is, however, heavily dependent upon the mass accuracy and sequence coverage of the fragment ions generated by peptide ionization. Without ultrahigh instrumental accuracy, it is possible to increase the specificity of the assignments of particular proteolytic peptides by the incorporation of selected amino acid residue(s) enriched with stable isotope(s) into the protein sequence. Here we report this novel method of generating residue-specific mass-tagged proteolytic peptides for accurate and efficient protein identification. Selected amino acids are labeled with 13C/15N/2H and incorporated into proteins in a sequence-specific manner during cell culturing. Each of these labeled amino acids carries a defined mass change encoded in its monoisotopic distribution pattern. Through their characteristic patterns, the peptides with mass tags can then be readily distinguished from other peptides in mass spectra. This method of identifying unique proteins can also be extended to protein complexes and will significantly increase data search specificity, efficiency, and accuracy for protein identifications.  相似文献   

5.
In this work, we describe the application of a stable isotope amino acid (lysine) labeling in conjunction with data-dependent multiplexed tandem mass spectrometry (MS/MS) to facilitate the characterization and identification of peptides from proteomic (global protein) digests. Lysine auxotrophic yeast was grown in the presence of 13C-labeled or unlabeled lysine and combined after harvesting in equal proportions. Endoproteinase LysC digestion of the cytosolic fraction produced a global proteomic sample, consisting of heavy/light labeled peptide pairs. Then data-dependent multiplexed-MS/MS was applied to simultaneously select and dissociate only labeled peptide ion pairs. The approach allows differentiation between N-terminal (e.g., b-type ions) and C-terminal fragment ions (e.g., y-type ions) in resulting tandem mass spectra, as well as the capability of differentiation between near-isobaric glutamine and lysine residues. We also describe the utility of peptide composition and fragment information to support peptide identifications and examine the potential application of lysine labeling for differential quantitative protein analysis.  相似文献   

6.
Amino acid sequence variations resulting from single-nucleotide polymorphisms (SNPs) were identified using a novel mass spectrometric method. This method obtains 99+% protein sequence coverage for human hemoglobin in a single LC-microspray tandem mass spectrometry (microLC-MS/MS) experiment. Tandem mass spectrometry data was analyzed using a modified version of the computer program SEQUEST to identify the sequence variations. Conditions of sample preparation, chromatographic separation, and data collection were optimized to correctly identify amino acid changes in six variants of human hemoglobin (Hb C, Hb E, Hb D-Los Angeles, Hb G-Philadelphia, Hb Hope, and Hb S). Hemoglobin proteins were isolated and purified, dehemed, (S)-carboxyami-domethylated, and then subjected to a combination proteolytic digestion to obtain a complex peptide mixture with multiple overlaps in sequence. Reversed-phase chromatographic separation of peptides was achieved on-line with MS utilizing a robust fritless microelectrospray interface. Tandem mass spectrometry was performed on an ion trap mass spectrometer using automated data-dependent MS/MS procedures. Tandem mass spectra were collected from the five most abundant ions in each scan using dynamic and isotopic exclusion to minimize redundancy. The spectra were analyzed by a version of the SEQUEST algorithm modified to identify amino acid substations resulting from SNPs.  相似文献   

7.
The analysis of mass spectrometry data is still largely based on identification of single MS/MS spectra and does not attempt to make use of the extra information available in multiple MS/MS spectra from partially or completely overlapping peptides. Analysis of MS/MS spectra from multiple overlapping peptides opens up the possibility of assembling MS/MS spectra into entire proteins, similarly to the assembly of overlapping DNA reads into entire genomes. In this paper, we present for the first time a way to detect, score, and interpret overlaps between uninterpreted MS/MS spectra in an attempt to sequence entire proteins rather than individual peptides. We show that this approach not only extends the length of reconstructed amino acid sequences but also dramatically improves the quality of de novo peptide sequencing, even for low mass accuracy MS/MS data.  相似文献   

8.
Tandem mass spectrometry has long been an intrinsic tool to determine phosphorylation sites in proteins. However, loss of the phosphate moiety from both phosphoserine and phosphothreonine residues in low-energy collision-induced dissociation is a common phenomenon, which makes identification of P-Ser and P-Thr residues complicated. A method for direct sequencing of the Ser and Thr phosphorylation sites by ESI tandem mass spectrometry following beta-elimination/sulfite addition to convert -HPO4 to -SO3 has been studied. Five model phosphopeptides, including three synthetic P-Ser-, P-Thr-, or P-Ser- and P-Thr-containing peptides; a protein kinases C-phosphorylated peptide; and a phosphopeptide derived from beta-casein trypsin digests were modified and then sequenced using an ESI-quadrupole ion trap mass spectrometer. Following incubation of P-Ser- or P-Thr-containing peptides with Na2SO3/NaOH, 90% P-Ser and 80% P-Thr was converted to cysteic acid and beta-methylcysteic acid, respectively, as revealed by amino acid analysis. The conversion can be carried out at 1 microM concentration of the peptide. Both cysteic acid and beta-methylcysteic acid residues in the sequence were shown to be stable and easily identifiable under general conditions for tandem mass spectrometric sequencing applicable to common peptides.  相似文献   

9.
Matrix-assisted laser desorption/ionization (tandem) mass spectrometry (MALDI MS) is widely used in protein chemistry and proteomics research for the identification and characterization of proteins isolated by polyacrylamide gel electrophoresis. In an effort to minimize sample handling and increase sample throughput, we have developed a novel in-gel digestion protocol where sample preparation is performed directly on a MALDI probe with prestructured sample support. The protocol consists of few sample-handling steps and has minimal consumption of reagents, making the protocol sensitive, timesaving, and cost-efficient. Performance of the on-probe sample preparation protocol was demonstrated by analysis of a set of rat liver proteins obtained from a fluorescently stained (Cy3 and SyproRuby) two-dimensional polyacrylamide gel. The success rate of protein identification by on-probe tryptic digestion and MALDI peptide mass mapping was 89%. The on-probe in-gel digestion procedure provided superior sensitivity and peptide mass mapping performance as compared to our standard in-gel digestion protocol. The on-probe digestion technique resulted in significantly improved amino acid sequence coverage of proteins, mainly due to efficient recovery and detection of large (>1.5 kDa) hydrophobic peptides. These observations indicate that numerous tryptic peptides are lost when using the standard in-gel digestion methods and sample preparation techniques for MALDI MS. This study also demonstrates that the on-probe digestion protocol combined with MALDI tandem mass spectrometry provides a robust platform for proteomics research, including protein identification and determination of posttranslational modifications.  相似文献   

10.
Detection and identification of pathogenic bacteria and their protein toxins play a crucial role in a proper response to natural or terrorist-caused outbreaks of infectious diseases. The recent availability of whole genome sequences of priority bacterial pathogens opens new diagnostic possibilities for identification of bacteria by retrieving their genomic or proteomic information. We describe a method for identification of bacteria based on tandem mass spectrometric (MS/MS) analysis of peptides derived from bacterial proteins. This method involves bacterial cell protein extraction, trypsin digestion, liquid chromatography MS/MS analysis of the resulting peptides, and a statistical scoring algorithm to rank MS/MS spectral matching results for bacterial identification. To facilitate spectral data searching, a proteome database was constructed by translating genomes of bacteria of interest with fully or partially determined sequences. In this work, a prototype database was constructed by the automated analysis of 87 publicly available, fully sequenced bacterial genomes with the GLIMMER gene finding software. MS/MS peptide spectral matching for peptide sequence assignment against this proteome database was done by SEQUEST. To gauge the relative significance of the SEQUEST-generated matching parameters for correct peptide assignment, discriminant function (DF) analysis of these parameters was applied and DF scores were used to calculate probabilities of correct MS/MS spectra assignment to peptide sequences in the database. The peptides with DF scores exceeding a threshold value determined by the probability of correct peptide assignment were accepted and matched to the bacterial proteomes represented in the database. Sequence filtering or removal of degenerate peptides matched with multiple bacteria was then performed to further improve identification. It is demonstrated that using a preset criterion with known distributions of discriminant function scores and probabilities of correct peptide sequence assignments, a test bacterium within the 87 database microorganisms can be unambiguously identified.  相似文献   

11.
With the increasing availability of de novo sequencing algorithms for interpreting high-mass accuracy tandem mass spectrometry (MS/MS) data, there is a growing need for programs that accurately identify proteins from de novo sequencing results. De novo sequences derived from tandem mass spectra of peptides often contain ambiguous regions where the exact amino acid order cannot be determined. One problem this poses for sequence alignment algorithms is the difficulty in distinguishing discrepancies due to de novo sequencing errors from actual genomic sequence variation and posttranslational modifications. We present a novel, mass-based approach to sequence alignment, implemented as a program called OpenSea, to resolve these problems. In this approach, de novo and database sequences are interpreted as masses of residues, and the masses, rather than the amino acid codes, are compared. To provide further flexibility, the masses can be aligned in groups, which can resolve many de novo sequencing errors. The performance of OpenSea was tested with three types of data: a mixture of known proteins, a mixture of unknown proteins that commonly contain sequence variations, and a mixture of posttranslationally modified known proteins. In all three cases, we demonstrate that OpenSea can identify more peptides and proteins than commonly used database-searching programs (SEQUEST and ProteinLynx) while accurately locating sequence variation sites and unanticipated posttranslational modifications in a high-throughput environment.  相似文献   

12.
A MALDI QqTOF mass spectrometer has been used to identify proteins separated by one-dimensional or two-dimensional gel electrophoresis at the femtomole level. The high mass resolution and the high mass accuracy of this instrument in both MS and MS/MS modes allow identification of a protein either by peptide mass fingerprinting of the protein digest or from tandem mass spectra acquired by collision-induced dissociation of individual peptide precursors. A peptide mass map of the digest and tandem mass spectra of multiple peptide precursor ions can be acquired from the same sample in the course of a single experiment. Database searching and acquisition of MS and MS/MS spectra can be combined in an interactive fashion, increasing the information value of the analytical data. The approach has demonstrated its usefulness in the comprehensive characterization of protein in-gel digests, in the dissection of complex protein mixtures, and in sequencing of a low molecular weight integral membrane protein. Proteins can be identified in all types of sequence databases, including an EST database. Thus, MALDI QqTOF mass spectrometry promises to have remarkable potential for advancing proteomic research.  相似文献   

13.
Currently available mass spectrometric (MS) techniques lack specificity in identifying protein modifications because molecular mass is the only parameter used to characterize these changes. Consequently, the suspected modified peptides are subjected to tandem MS/MS sequencing that may demand more time and sample. We report the use of stable isotope-enriched amino acids as residue-specific "mass signatures" for the rapid and sensitive detection of protein modifications directly from the peptide mass map (PMM) without enrichment of the modified peptides. These mass signatures are easily recognized through their characteristic spectral patterns and provide fingerprints for peptides containing the same content of specific amino acid residue(s) in a PMM. Without the need for tandem MS/MS sequencing, a peptide and its modified form(s) can readily be identified through their identical fingerprints, regardless of the nature of modifications. In this report, we demonstrate this strategy for the detection of methionine oxidation and protein phosphorylation. More interestingly, the phosphorylation of a histone protein, H2A.X, obtained from human skin fibroblast cells, was effectively identified in response to low-dose radiation. In general, this strategy of residue-specific mass tagging should be applicable to other posttranslational modifications.  相似文献   

14.
We report here the application of electrospray ionization tandem mass spectrometry for the characterization of protein ubiquitylation, an important posttranslational modification of cellular proteins. Trypsin digestion of ubiquitin-conjugated proteins produces diglycine branched peptides containing the modification sites. Chemical derivatization by N-terminal sulfonation was carried out on several model peptides for the formation of a characteristic fragmentation pattern in their MS/MS analysis. The fragmentation of derivatized singly charged peptides results in a product ion distribution similar to that already observed by MALDI-TOF MS/MS. Signature fragments distinguished the diglycine branched peptides from other modified and unmodified peptides, while the sequencing product ions reveal the amino acid sequence and the location of the ubiquitylation site. Doubly charged peptide derivatives fragment in a somewhat different manner, but several fragments characteristic to diglycine branched peptides were observed under low collision energy conditions. These signature peaks can also be used to identify peptides containing ubiquitylation sites. In addition, a marker ion corresponding to a glycine-modified lysine residue produced by high-energy fragmentation provides useful information for identity verification. The method is demonstrated by the analysis of three ubiquitin-conjugated proteins using LC/MS/MS.  相似文献   

15.
Proteins of a liver extract taken from a metabolically (13)C-labeled mouse were separated by 2D-PAGE and identified after tryptic digestion by MALDI-TOF MS peptide mass fingerprinting. (13)C-Labeling of proteins was achieved by an infusion of U-(13)C-glucose, which is metabolized to labeled nonessential amino acids. The labeling was analyzed using the relative isotopologue abundances of the measured isotope pattern of tryptic peptides and quantified by their increase in the average molecular mass (DeltaAVM). Fractional synthesis rates (FSR) of proteins were determined from corresponding peptides using measured DeltaAVM values as well as DeltaAVM values deduced from tRNA-precursor amino acid labeling, which in turn was derived from proteins showing high (13)C enrichments. The 8-h FSR values of 43 proteins were determined to range from 0 +/- 0.6 to 95 +/- 1%/8 h, with typical errors given as SEM values, which depend on the number of peptides of a specific protein usable for calculation. The method demonstrates that FSR values as an indicator for protein turnover in the liver proteome can be estimated within narrow error margins, providing baseline values from which treatment-dependent deviations could be detected with high statistical certainty.  相似文献   

16.
Botulinum neurotoxin (BoNT) is one of the most toxic substances known. BoNT is classified into seven distinct serotypes labeled A-G. Among individual serotypes, researchers have identified subtypes based on amino acid variability within a serotype and toxin variants with minor amino acid sequence differences within a subtype. BoNT subtype identification is valuable for tracing and tracking bacterial pathogens. A proteomics approach is useful for BoNT subtyping since botulism is caused by botulinum neurotoxin and does not require the presence of the bacteria or its DNA. Enzymatic digestion and peptide identification using tandem mass spectrometry determines toxin protein sequences. However, with the conventional one-step digestion method, producing sufficient numbers of detectable peptides to cover the entire protein sequence is difficult, and incomplete sequence coverage results in uncertainty in distinguishing BoNT subtypes and toxin variants because of high sequence similarity. We report here a method of multiple enzymes and sequential in-gel digestion (MESID) to characterize the BoNT protein sequence. Complementary peptide detection from toxin digestions has yielded near-complete sequence coverage for all seven BoNT serotypes. Application of the method to a BoNT-contaminated carrot juice sample resulted in the identification of 98.4% protein sequence which led to a confident determination of the toxin subtype.  相似文献   

17.
Ramos AA  Yang H  Rosen LE  Yao X 《Analytical chemistry》2006,78(18):6391-6397
Parallel fragmentations of peptides in the source region and in the collision cell of tandem mass spectrometers are sequentially combined to develop parallel collision-induced-dissociation mass spectrometry (p2CID MS). Compared to MS/MS spectra, the p2CID mass spectra show increased signal intensities (2-400-fold) and number of sequence ions. This improvement is attributed to the fact that p2CID MS virtually samples all the ions generated by electrospray ionization, including intact and fragment ions of different charge states from a peptide. We implement the method using a quadrupole time-of-flight tandem mass spectrometer. The instrument is operated in TOF-MS mode that allows the ions from source region broadband-passing the first mass analyzer to enter the collision cell. Cone voltage and collision energy are investigated to optimize the outcome of the two parallel CID processes. In the in-source parallel CID, elevated cone voltage produces singly charged intact peptide ions and large fragment ions, as well as decreases the charge-state distribution of peptide ions mainly to double and single charges. The in-collision-cell parallel CID is optimized to dissociate the ions from the source region to produce small and medium fragment ions. The method of p2CID MS is especially useful for sequencing of large peptides with labile amide bonds and peptides with C-terminal arginine. It has unique potential for de novo sequencing of peptides and proteome analysis, especially for affinity-enriched subproteomes.  相似文献   

18.
Utility of accurate mass tags for proteome-wide protein identification   总被引:8,自引:0,他引:8  
An enabling capability for proteomics would be the ability to study protein expression on a global scale. While several different separation and analysis options are being investigated to advance the practice of proteomics, mass spectrometry (MS) is rapidly becoming the core instrumental technology used to characterize the large number of proteins that constitute a proteome. To be most effective, proteomic measurements must be high-throughput, ideally allowing thousands of proteins to be identified on a time scale of hours. Most strategies of identification by MS rely on the analysis of enzymatically produced peptides originating from an isolated protein followed by either peptide mapping or tandem MS (MS/MS) to obtain sequence information for a single peptide. In the case of peptide mapping, several peptide masses are needed to unambiguously identify a protein with the typically achieved mass measurement accuracies (MMA). The ability to identify proteins based on the mass of a single peptide (i.e., an accurate mass tag; AMT) is proposed and is largely dependent on the MMA that can be achieved. To determine the MMA necessary to enable the use of AMTs for proteome-wide protein identification, we analyzed the predicted proteins and their tryptic fragments from Saccharomyces cerevisiae and Caenorhabditis elegans. The results show that low ppm (i.e., approximately 1 ppm) level measurements have practical utility for analysis of small proteomes. Additionally, up to 85% of the peptides predicted from these organisms can function as AMTs at sub-ppm MMA levels attainable using Fourier transform ion cyclotron resonance MS. Additional information, such as sequence constraints, should enable even more complex proteomes to be studied at more modest mass measurement accuracies. Once AMTs are established, subsequent high-throughput measurements of proteomes (e.g., after perturbations) will be greatly facilitated.  相似文献   

19.
Divinyl sulfone reacts at pH 8-9 with the alpha-amino groups of N-terminal residues, proline, the epsilon-amino groups of lysine, and the histidine side chains of peptides. This reaction leads to great enhancement of the abundance of the normally weak or missing "a(1)" fragment ion in MS/MS analysis defining the N-terminal residue of a peptide in a digest. This provides "one-step Edman-like" information that, together with a fairly accurately determined mass, often enables one to correctly identify a protein or family of proteins. The applicability of this procedure in proteomics was demonstrated with several peptides and tryptic digests of protein mixtures by LC-MS/MS experiments using a QTOF and MALDI-PSD analyses. Advantages of this approach are its simple chemistry, retention of charge multiplicity, and possibly, shortening of database search time. Used with other MS/MS data, it provides higher confidence in the scores and identification of a protein found in peptide mass fingerprinting. Moreover, this approach has an advantage in "de novo" sequencing due to its ability to decipher the first amino acid of a peptide whose information is normally unavailable in MS/MS spectra.  相似文献   

20.
A novel ion trap time-of-flight hybrid mass spectrometer (qIT-TOF MS) has been applied for peptide sequencing in proteolytic digests generated from spore mixtures of Bacilli. The method of on-probe solubilization and in situ proteolytic digestion of small, acid-soluble spore proteins has been recently developed in our laboratory, and microorganism identification in less than 20 min was accomplished. In this study, tryptic peptides were generated in situ from complex spore mixtures of B. subtilis 168, B. globigii, B. thuringiensis subs. Kurstaki, and B. cereus T, respectively. MALDI analysis of bacterial peptides generated was performed with an average mass resolving power of 6200 and a mass accuracy of up to 10 ppm using a trap-TOF tandem configuration. Precursor ions of interest were usually selected and stored in the quadrupole ion trap with their complete isotope distribution by choosing a window of +/- 2 Da. Sequence-specific information on isolated protonated peptides was gained via tandem MS experiments with an average mass resolving power of 4450 for product ion analysis, and protein and bacterial sources were identified by database searching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号