首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了快速制备较高纯度的黑果枸杞花色苷,黑果枸杞花色苷粗提物首先用大孔树脂-中压制备色谱进行纯化,再用凝胶树脂-中压制备色谱分离获得2个花色苷单体,采用超高效液相色谱-串联质谱(ultra-high performance liquid chromatography-tandem mass spectrometry,UPLC-MS/MS)、核磁共振氢谱(1H nuclear magnetic resonance,1H NMR)对其结构进行鉴定,并对纯化物的胰脂肪酶抑制活性进行评价。结果表明:用D101大孔树脂-中压制备色谱对黑果枸杞花色苷进行纯化,所得纯化物中P1、P2的相对含量分别为18.22%和30.77%,继续采用Sephadex LH-20联合中压制备色谱分离纯化可得到相对含量分别为84.16%和81.48%的两个黑果枸杞花色苷组分P1和P2,经UPLC-MS/MS和1H NMR鉴定,2个花色苷化合物分别为矮牵牛素-3-O-芸香糖(反式-对香豆酰基)-葡萄糖苷-5-O-葡萄糖苷和矮牵牛素-3-O-芸香糖(反式-对香...  相似文献   

2.
单体花色苷的快速大量制备长久以来是花色苷产业化中的难题,而中压制备液相色谱在产业应用中有着很大的开发空间。选取花色苷组分较单一的桑葚为实验原料,经提取分离总花色苷后使用填装有反相C18填料的耐压玻璃柱作为中压制备液相色谱柱,纯化制备矢车菊素-3-葡萄糖苷单体。结果显示:3 个色谱分离峰中目的峰(峰2)经高效液相色谱和质谱确证为由矢车菊素-3-葡萄糖苷(cyanidin-3-glucoside,C3G)和矢车菊素-3-芸香糖苷(cyanidin-3-rutinoside,C3R)组成,采用峰面积归一化法计算得到C3G纯度为73.56%;通过对峰2采用切割方式进行收集,C3G纯度达到98%以上,单次收集到C3G单体溶液650?mL。中压制备液相色谱法单次上样量大、步骤简洁、成本低廉,可为矢车菊素-3-葡萄糖苷单体的规模化生产提供一定的参考。  相似文献   

3.
本实验以紫甘薯、黑枸杞、黑加仑和桑葚花色苷提取物为原料,制备其单体花色苷组分并研究其体外抗氧化性质。选取每种花色苷中含量较高,分子量居中,具有代表性的单体化合物作为目标组分,采用高速逆流色谱制备分离四种来源的花色苷。选用甲基叔丁基醚-正丁醇-乙腈-水-三氟乙酸作为溶剂体系,流速设定为5 mL/min,转速为850 r/min,分离得到高纯度花色苷单体化合物。采用分光光度法、HPLC-MS法分析测定花色苷含量及主要组成,用DPPH自由基、羟自由基清除能力和总还原力的测定分析其体外抗氧化活性。结果表明,四种来源的花色苷中代表性的成分依次为芍药素-3-咖啡酰-阿魏酰槐糖苷-5-葡萄糖苷、矮牵牛素-3-O-对香豆酰芸香糖苷-5-O-葡萄糖苷、矢车菊-3-芸香糖苷和矢车菊-3-O-葡萄糖苷,它们均具有良好的体外抗氧化活性。  相似文献   

4.
为明确紫玉米苞叶花色苷的组成及比较单体花色苷的热稳定性,实验采用大孔树脂、凝胶树脂分离纯化紫玉米苞叶花色苷提取物,得到三个不同花色苷组分,并采用液质联机的方法鉴定其结构;将制备的花色苷提取物及三个单体组分进行热重仪器分析,比较不同组分的热稳定性结果表明紫玉米苞叶中共含有6种花色苷,通过分离纯化后能够得到三个组分,第一个组分为芍药-3-O-葡萄糖苷和天竺葵-3-O-葡萄糖苷的混合物,第二个组分为矢车菊-3-O-葡萄糖苷,第三个组分为矢车菊-3-(6' 丙二酰-葡萄糖苷).其中总花色苷提取物的热稳定性最强,矢车菊-3-(6'丙二酰-葡萄糖苷)次之,芍药-3-O-葡萄糖苷和天竺葵-3-O-葡萄糖苷的混合物与矢车菊-3-O-葡萄糖苷热稳定性相当,均较以上组分弱.  相似文献   

5.
顿倩  彭瀚  麦琦莹  邓泽元  张兵 《食品科学》2019,40(10):178-186
以超声波辅助有机溶剂提取法获得黑豆种皮可溶型花青素提取物,再进一步对不含可溶型花青素的黑豆种皮残渣使用酸水解和碱水解以及酸碱/碱酸轮提水解,获得黑豆种皮结合型花青素提取物。采用超高效液相色谱-电喷雾-四极杆飞行时间质谱联用仪分析鉴定各黑豆种皮提取物中所含有的共17 种花青素成分,包括11 种花青素糖苷类:飞燕草素-3-O-葡萄糖苷、飞燕草素-3-O-半乳糖苷、矮牵牛花素-3-O-葡萄糖苷、矮牵牛花素-3-O-半乳糖苷、天竺葵素-3-O-芸香糖苷、矢车菊素-3-O-葡萄糖苷、矢车菊素-3-O-半乳糖苷、天竺葵素-3-O-己糖苷、芍药花素-3-O-己糖苷、天竺葵素-3-O-(6”-丙二酰葡萄糖苷)和芹菜定-3-O-(6”-丙二酰葡萄糖苷);6 种花青素苷元:飞燕草素、矢车菊素、矮牵牛花素、天竺葵素、芹菜定和芍药花素。采用高效液相色谱-电喷雾-三重四极杆质谱联用仪精确定量各类黑豆种皮提取物中的花青素含量,结果表明,酸性结合型花青素提取物中结合型花青素的总含量最高。此外,在黑豆种皮的可溶型花青素提取物中,花青素主要以花青素糖苷类形式存在,苷元含量相对极少;而在结合型花青素提取物中,则主要以花青素苷元为主,糖苷类化合物相对少见。  相似文献   

6.
《食品与发酵工业》2014,(8):194-200
利用超高效液相色谱-三重四级杆串联质谱联用技术(UPLC MS/MS),对黑豆皮中花青苷类物质进行定性分析。黑豆皮经石油醚索氏提取和6%甲酸水溶液回流提取,取上清液,超滤后用UPLC MS/MS、ACQUITY UPLC BEH C18(2.1 mm×50 mm,1.7μm)色谱柱,以6%甲酸和乙腈为流动相,进行梯度洗脱,在电喷雾(ESI)正离子模式下,用MRM模式监测。在黑豆皮中检测出矢车菊素类、芍药素类、天竺葵素类、锦葵素类、矮牵牛素类和飞燕草素类这6类共15种花青苷类物质,矢车菊素-3,5-双葡萄糖苷、矢车菊素-3-芸香糖苷、芍药素-3,5-双葡萄糖苷、芍药素-3-半乳糖苷、锦葵素-3-半乳糖苷、锦葵素-3-葡萄糖苷、矮牵牛素-3-半乳糖苷、矮牵牛素这8种花青苷在黑豆皮花青苷类物质研究中未见报道。通过对黑豆皮花青苷类物质的分析,建立了UPLC MS/MS检测黑豆皮中花青苷类物质方法,该方法具有操作简便、准确、快速、选择性强的特点。  相似文献   

7.
利用高效液相色谱与二极管阵列检测器/电喷雾质谱联用技术研究了牡丹花中的花色苷类化合物,分离检测了五种花色苷,结合紫外吸收光谱和质谱信息分别鉴定为矢车菊-3,5-O-二葡萄糖苷,矢车菊-3-O-葡萄糖苷、芍药-3,5-O-二葡萄糖苷、芍药-3-O-葡萄糖苷和天竺葵-3,5-O-二葡萄糖苷;比较了六个牡丹品种的花色苷组成。  相似文献   

8.
为探究大豆种皮中黄酮类色素的含量和分布规律,选取167份大豆种质资源为实验材料,利用高效液相色谱(HPLC)法对大豆种皮黄酮类色素含量进行测定。结果表明:大豆种皮花色苷组分中矢车菊素-3-O-葡萄糖苷含量最多,异黄酮组分中大豆苷含量最高。花色苷组分在野生和半野生大豆种皮中高于栽培大豆。异黄酮组分中染料木苷在野生大豆中最高,黄豆黄苷在半野生大豆中最高,其他组分在栽培大豆中最高。栽培大豆黑色种皮花色苷组分、染料木苷和大豆苷元含量最高,青色种皮大豆苷和黄豆黄苷含量最高,双色种皮黄豆黄素含量最高。相关分析表明3类结合型糖苷内部、3类游离型苷元内部、3种花色苷组分内部两两相关极显著。大豆苷与游离型苷元、矢车菊素-3-O-葡萄糖苷相关显著。聚类分析将大豆材料划分为三大类群,第一类群除黄豆黄苷和飞燕草素-3-O-葡萄糖苷外,其他色素组分含量均最高,为黄酮类色素的研究和利用提供参考。  相似文献   

9.
欧李花色苷的分离及其鉴定   总被引:1,自引:0,他引:1  
采用高效液相色谱与离子阱串联飞行时间检测器-质谱联用技术,分离鉴定欧李中的花色苷类化合物。结果表明:从欧李红色素中分离得到6种组分,分别为:矢车菊-3-葡萄糖苷、天竺葵-3-葡萄糖苷、矢车菊-3-鼠李糖葡萄糖苷、天竺葵-3-鼠李糖葡萄糖苷、矢车菊-3-乙酰基葡萄糖苷、天竺葵-3-乙酰基葡萄糖苷。其中,矢车菊-3-葡萄糖苷为主要花色苷,占欧李总花色苷含量的62.6%。因此,采用高效液相色谱-质谱联用技术可有效地分离分析欧李中花色苷类物质。  相似文献   

10.
目的:建立黑豆皮中矢车菊素-3-O-葡萄糖苷的含量测定方法,测定5个不同产地黑豆皮中矢车菊素-3-O-葡萄糖苷的含量。方法:采用HPLC法测定黑豆皮中矢车菊素-3-O-葡萄糖苷的含量,色谱柱采用Phenomenex Luna Su C18 柱 (250mm×4.60mm,5μm);流动相A相为0.5%磷酸溶液,B相为水-乙腈(50:50),进行梯度洗脱;流速0.8mL/min;检测波长520nm;柱温30℃;进样量10μL。结果:矢车菊素-3-O-葡萄糖苷标准曲线回归方程为:Y=2×107X-33120(r=0.9998),在 0.1041~1.041μg范围内线性关系良好,平均回收率分别为92.4%、 92.5%和95.5%,不同产地黑豆皮中矢车菊素-3-O-葡萄糖苷含量范围为5.263~12.829mg/g。结论:所用方法简便、准确,可用于不同产地黑豆皮的质量控制。  相似文献   

11.
通过AB-8大孔树脂、乙酸乙酯萃取和Toyopearl TSK HW-40S凝胶柱层析对桑葚汁中的花色苷进行分离纯化,得到两个单一的化合物组分。经HPLC-MS鉴定这两种花色苷分别为矢车菊素-3-芸香糖苷和矢车菊素-3-葡萄糖苷。在此基础上,研究了不同纯度花色苷的降解动力学,结果表明:桑葚花色苷粗提物中所含的黄酮类化合物对花色苷的热降解有较强的保护作用,含黄酮的花色苷体系对p H值的变化更为敏感。在p H 3.5时,矢车菊素-3-芸香糖苷和矢车菊素-3-葡萄糖苷的热稳定性基本相同;在p H 4.0时,矢车菊素-3-芸香糖苷的热稳定性略好于矢车菊素-3-葡萄糖苷。  相似文献   

12.
依次以MCI gel CPH 20P(75~150μm)树脂和Sephadex~(TM) LH-20葡聚糖凝胶为层析柱填料,对‘紫娟’茶花色苷进行分离纯化,采用5%乙酸-甲醇溶液和5%乙酸溶液对花色苷提取液梯度洗脱,得到6种花色苷组分。采用薄层层析、高效液相色谱及高效液相色谱-电喷雾-串联质谱对‘紫娟’茶花色苷组成成分进行研究。结果表明:从‘紫娟’茶鲜叶中分离出的花色苷为飞燕草素-3-O-半乳糖苷、矢车菊素-3-O-半乳糖苷、飞燕草素-3-O-(6-(Z)对香豆酸)吡喃半乳糖苷、矢车菊素-3-O-(6-(Z)对香豆酸)吡喃半乳糖苷、飞燕草素-3-O-(6-(E)对香豆酸)吡喃半乳糖苷、矢车菊素-3-O-(6-(E)对香豆酸)吡喃半乳糖苷。  相似文献   

13.
杜霞  周少潼  李春美 《食品工业科技》2020,41(3):175-181,187
为快速获得大量不同结构花色苷,本文以富含花色苷的桑葚和树莓为原料,通过大孔吸附树脂AB-8对两种花色苷粗提物初步分离后,利用中压快速分离系统分离得到高纯度的桑葚及树莓花色苷。制备条件为:以flash C18(80 g,20~35 μm,100 A)为制备柱,两支串联,采用A相2%甲酸水,B相甲醇,流速30 mL/min,梯度洗脱程序:0~2 min,20% B;2~22 min,20%~30% B;22~32 min,30%~40% B,进样量300 mg,实现了3种不同结构花色苷的分离及纯化,桑葚中的矢车菊素-3-葡萄糖苷和矢车菊素-3-芸香糖苷产品纯度分别达到了95%和41%;树莓中的矢车菊素-3-槐糖苷和矢车菊素-3-葡萄糖苷产品纯度分别达到了60%和75%。其中桑葚中的矢车菊素-3-葡萄糖苷在32 min梯度程序内一次性可获得30 mg,且纯度为95%,可达到标准品的要求。  相似文献   

14.
为纯化、鉴定紫色马铃薯(Solanum tuberosum L.)皮中的花色苷组分,采用2%柠檬酸水和D101大孔树脂对紫色马铃薯皮花色苷进行提取分离,利用高效液相色谱外标峰面积法测定花色苷的含量为207.33 mg/g冻干粉,并通过HPLC-DAD-ESI-MS/MS联用技术鉴定紫色马铃薯皮花色苷的组成。紫色马铃薯皮花色苷冻干粉共检出14种花色苷,以矮牵牛素-3-O-对香豆酰芸香糖苷-5-O-葡萄糖苷含量最为丰富。所有花色苷中,4种花色苷以花色素-3-O-芸香糖苷-5-O-葡萄糖苷形式存在,9种花色苷以花色素-3-O-对香豆酰(或咖啡酰或阿魏酰)芸香糖苷-5-O-葡萄糖苷的形式存在,除此之外,存在一种花色苷可能采取C3,C7-位双糖基取代。紫色马铃薯皮中所含花色苷绝大多数为酰化双糖基取代花色苷,结构稳定,因而紫色马铃薯皮作为一种食品加工副产物具有良好的开发前景和利用价值。  相似文献   

15.
以蓝莓果实为原料,采用大孔树脂-中压柱层析联用分离纯化蓝莓花色苷。分别比较6 种不同类型树脂 对蓝莓花色苷静态吸附-解吸效果,优化大孔树脂分离纯化蓝莓花色苷的工艺。结果表明:D101大孔树脂对蓝莓 花色苷的分离效果最佳,对花色苷的吸附属于多分子层吸附。在柱压力为1 MPa、温度25 ℃、上样液质量浓度为 0.073 mg/mL、洗脱剂乙醇体积分数为80%、流速5 mL/min条件下,经D101大孔树脂柱分离后,花色苷纯度从5.53% 增加到75.58%,提高了12.67 倍。采用Sephadex LH-20中压柱层析对蓝莓花色苷进一步分离纯化,主要得到1 种花 色苷组分,通过高效液相色谱和高效液相色谱-电喷雾质谱联用对蓝莓花色苷进行定性和定量分析,确定该组分为 矢车菊-3-O-葡萄糖苷,纯度达到90.88%。  相似文献   

16.
杨玲  苏亚丽  陈敏 《食品科学》2012,33(21):145-148
采用高速逆流色谱分离制备药桑花色苷。以甲基叔丁基醚-正丁醇-乙腈-水-三氟乙酸(2:2:1:5:0.01,V/V)为溶剂体系,进样量50mg,分离得到纯度分别为99.24%、88.5%、99.9%和96%的4个花色苷单体。通过高速逆流色谱(HSCCC)、紫外-可见光谱、质谱进行结构鉴定,初步确定馏分1为矢车菊-3-O-芸香糖苷,馏分2为天竺葵-3-O-芸香糖苷,馏分3为矢车菊-3-O-葡萄糖苷,馏分4为天竺葵-3-O-葡萄糖苷。此法高效、稳定、简捷易行。  相似文献   

17.
采用盐酸甲醇溶液超声提取有色稻米花色苷,以超高效液相色谱-紫外检测器对有色稻米中主要花色苷矢车菊素-3-O-葡萄糖苷和芍药素-3-O-葡萄糖苷进行定量检测。结果表明,在0. 5~50. 0μg/mL浓度范围内线性关系良好,R~2 0. 999;矢车菊素-3-O-葡萄糖苷回收率在93. 0%~98. 5%,RSD在0. 33%~3. 50%;芍药素-3-O-葡萄糖苷回收率在96. 0%~111. 7%,RSD在0. 42%~2. 18%。对四川重庆地区的4个黑米样品、1个紫米样品和5个红米样品的糙米和米糠中主要花色苷的测定结果表明,黑米、黑米糠、紫米和紫米糠中花色苷总量分别为0~1 051. 27 mg/kg,74. 06~206. 82 mg/kg,296. 18 mg/kg和116. 15 mg/kg;红米中未检出矢车菊素-3-O-葡萄糖苷和芍药素-3-O-葡萄糖苷,部分红米糠中检出矢车菊素-3-O-葡萄糖苷,含量为0~50. 94 mg/kg。  相似文献   

18.
以黒粒小麦麸皮为原料,应用高效液相色谱配以串联质谱和二极管阵列检测技术对黒粒小麦中麸皮中的花色苷的组成进行了分析。结果显示:从黒粒小麦麸皮中分离鉴定出9种不同的花色苷类化合物———矢车菊素-己糖苷、矢车菊素-芦丁苷、芍药素-己糖苷、矢车菊素-丙二酰葡萄糖苷、飞燕草素-己糖苷、飞燕草色素-芦丁苷、锦葵色素-芦丁苷、芍药素-芦丁苷及牵牛花素-芦丁苷,其中飞燕草类花色苷和矢车菊素类花色苷是主要花色苷,分别占全部花色苷含量的50.27%和30.04%。  相似文献   

19.
赵婧  李涵涵  千文  朴昌善  杨长青 《食品科学》2021,42(18):212-217
分别探讨摩尔吸光系数和对照品对pH示差法和高效液相色谱(high performance liquid chromatography,HPLC)法测定黑果腺肋花楸果中总花色苷含量的影响,并通过比较优化前后pH示差法和HPLC法的测定结果,确定黑果腺肋花楸果中总花色苷含量的最佳测定方法。采用t检验将优化前后测定方法测得的总花色苷含量进行比较。结果表明,摩尔吸光系数和对照品的选择均会影响测定结果,其中以黑果腺肋花楸果中高含量的矢车菊素-3-O-半乳糖苷为标准的pH示差法和混合标样HPLC法均优于传统方法(以矢车菊素-3-O-葡萄糖苷为标准)(P<0.05);以矢车菊素-3-O-半乳糖苷为标准的单标样HPLC法与混合标样HPLC法测定结果比较无显著差异(P>0.05);HPLC法测定结果均高于pH示差法。结果表明,混合标样HPLC法为测定黑果腺肋花楸果中总花色苷含量最准确的方法,但成本较高;矢车菊素-3-O-半乳糖苷单标样HPLC法简单、准确而经济,同样适用于黑果腺肋花楸果中总花色苷的含量测定。  相似文献   

20.
蓝莓果实中花色苷单体的色谱分离纯化   总被引:1,自引:0,他引:1  
为充分开发蓝莓果实的潜在应用价值,主要采用柱色谱法及半制备高效液相色谱法系统研究蓝莓果实中花色苷(花青素的糖苷形式)单体的制备技术。蓝莓花色苷粗提液经超声辅助浸提、乙酸乙酯萃取2次,能够促进花色苷类物质的溶出,并有效去除溶液中的黄酮类杂质。经Amberlite XAD-7HP大孔树脂层析、Sep-Pak C18固相萃取,所得蓝莓花色苷粗品的纯度为62.49%。经Sephadex LH-20凝胶色谱柱分离,获得的3种花色苷纯化组分纯度在65%~75%之间。运用半制备型高效液相色谱技术从3种花色苷纯化组分中制备出两种蓝莓果实中含量较低的半乳糖苷化的花色苷单体,经分析型高效液相色谱鉴定为飞燕草素-3-O-半乳糖苷和锦葵色素-3-O-半乳糖苷,纯度分别为96.98%和95.63%。本研究为花色苷单体的规模化生产提供了技术参考,同时为实现蓝莓花青素高附加值产品的生产提供良好理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号