首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
章丽琳  叶陵  张喻 《中国酿造》2015,34(12):105
为了提高抗性淀粉的得率,并获得抗性淀粉制备方法的最佳工艺参数,该试验以马铃薯淀粉为原料,抗性淀粉得率为评价指标,采用纤维素酶-压热法制备马铃薯抗性淀粉。研究淀粉乳浓度、酶添加量、酶解时间、压热温度、压热时间5个因素对马铃薯抗性淀粉得率的影响,在单因素试验的基础上,通过正交试验优化得出马铃薯抗性淀粉的最佳制备工艺条件,即淀粉乳含量25%、淀粉乳pH 5.0、酶用量30 U/mL、酶解时间50 min、压热温度125 ℃、压热时间30 min、老化温度4 ℃、老化时间18 h,在此条件下抗性淀粉的得率为30.33%。  相似文献   

2.
研究香蕉抗性淀粉含量和单宁含量与香蕉成熟度的关系,再通过单因素试验和正交试验方法,优化单宁酶酶解去除单宁的工艺参数,以提取出纯度更高的香蕉抗性淀粉。研究结果表明:随着成熟度的增加,香蕉果肉的硬度越小,抗性淀粉含量越少,单宁含量也越少。单宁酶酶解4个因素对单宁脱除效果的影响大小依次为:单宁酶用量酶解温度酶解时间酶作用p H。最佳酶解条件为单宁酶用量0.12%,p H 6.5,50℃,酶解时间为100 min,该条件下单宁脱除率达56.70%。  相似文献   

3.
通过比较抗性淀粉含量和体外消化性能试验筛选板栗RS3型抗性淀粉最佳制备方法,并采用正交试验进行优化,确定板栗RS3型抗性淀粉的最佳制备工艺。结果表明,压热-酶解法制备的抗性淀粉含量显著高于压热法和微波法(P<0.05),且体外消化率最低,故选择压热-酶解法为最佳制备方法。单因素试验证明:淀粉乳浓度,酶解时间,酶用量以及压热温度是影响压热-酶解工艺的主要因素。正交试验确定板栗RS3型抗性淀粉最佳制备工艺条件为:淀粉乳浓度20%、酶解时间6h、酶用量25 npun/g淀粉、压热温度100℃,在此条件下抗性淀粉含量为10.01%。综上压热-酶解法是制备板栗RS3型抗性淀粉的最佳方法,具有一定的应用前景。  相似文献   

4.
普鲁兰酶处理条件对淀粉增抗效应的规律研究   总被引:2,自引:0,他引:2  
以大米淀粉、葛根淀粉、绿豆淀粉、藕淀粉为原材料,采用加入脱支酶的方法.研究4种淀粉提高其抗性淀粉含量的共同规律.试验结果表明:各因素的变化曲线比较一致,因素影响大小依次为淀粉乳浓度、冷藏温度、普鲁兰酶用量、普鲁兰酶解时间.得出最佳工艺为淀粉乳浓度为9%,冷藏温度为(0~4)℃,普鲁兰酶用量为5.75 ASPU/g,普鲁兰酶解时间为90 min.  相似文献   

5.
酶解法制备荞麦抗性淀粉的工艺优化   总被引:1,自引:0,他引:1  
为确定荞麦粉制备抗性淀粉的工艺条件,采用普鲁兰酶酶解脱支法,并通过单因素和正交试验研究了影响抗性淀粉得率的因素。结果表明:影响抗性淀粉得率的因素主次顺序依次为荞麦粉浓度、普鲁兰酶用量、酶解时间和酶解温度。酶解法制备荞麦抗性淀粉的适宜工艺条件为荞麦粉浓度5 g/(100 mL)、普鲁兰酶用量7.2 PUN/g、酶解温度45℃、酶解时间8 h,在此条件下测得的抗性淀粉含量为15.82%。与原粉相比,普鲁兰酶酶解脱支与湿热法相结合制备荞麦抗性淀粉使其抗性淀粉含量显著提高。  相似文献   

6.
以马铃薯淀粉为原料,六偏磷酸钠为交联剂,制备了低交联度的马铃薯交联淀粉。通过单因素试验和正交试验确定了马铃薯交联淀粉的最佳制备工艺条件。试验结果表明:马铃薯交联淀粉交联度的影响因素从大到小依次为:反应温度、反应时间、马铃薯淀粉质量分数、六偏磷酸钠用量。最佳工艺条件为六偏磷酸钠质量分数0.3%,反应温度55℃,马铃薯淀粉质量分数20%,反应时间160min,此条件下可制得沉降积为2.32ml的马铃薯交联淀粉。  相似文献   

7.
目的:优化马铃薯交联酯化淀粉的合成工艺并考察变性后产品特性的变化。方法:通过单因素实验得出不同因素对马铃薯交联酯化淀粉交联酯化度的影响,利用sas8.2统计学软件做显著性分析,优化合成工艺。结果:马铃薯交联酯化淀粉的最佳合成工艺为:交联温度为35℃,交联剂用量为0.3%,交联pH为10,交联反应时间为3h,酯化剂添加量为10%,酯化pH控制在8.0~8.4,固定时间为1h,可得到性能较好的变性淀粉。结论:采用优选的最佳工艺合成马铃薯交联酯化淀粉,各项性能指标均获得显著改善,产品稳定可靠。  相似文献   

8.
马铃薯交联酯化淀粉的制备工艺优化及糊化特性   总被引:1,自引:0,他引:1  
优化马铃薯交联酯化淀粉的合成工艺并考察变性后产品特性的变化.通过单因素试验得出不同因素对马铃薯交联酯化淀粉交联酯化度的影响,利用SAS8.2统计学软件做显著性分析,优化合成工艺.马铃薯交联酯化淀粉的最佳合成工艺为:交联温度为35℃,交联剂用量为0.3%,交联pH为10,交联反应时间为3 h,酯化剂添加量为10%,酯化pH值控制在8.0~8.4,固定时间为1 h,可得到性能较好的变性淀粉.  相似文献   

9.
多种酶法处理提高马铃薯回生抗性淀粉制备率   总被引:4,自引:1,他引:4  
以马铃薯淀粉为原料,以抗性淀粉制备产率为考察指标,研究α–淀粉酶、糖化酶和纤维素酶种类、酶加量、酶解时间、酶解温度、酶解pH、多种酶最佳配比及酶解顺序对RS3型抗性淀粉制备产率影响。固定条件:淀粉乳10%,高压温度120℃,高压时间30min,老化温度4℃,老化时间12h,糖化酶单独处理制备马铃薯回生抗性淀粉最佳酶解工艺条件为:糖化酶加量为1,200U/mL,酶解时间为60min,pH为5.0,酶解温度为55℃,制备产率达8.862%;纤维素酶单独处理制备马铃薯回生抗性淀粉最佳酶解工艺条件为:纤维素酶加量为40U/mL,酶解时间为45min,pH为5.0,酶解温度为35℃,制备产率达17.748%。α–淀粉酶、糖化酶和纤维素酶两两联合处理、三种酶共同处理均使马铃薯回生抗性淀粉制备产率降低;而纤维素酶处理可大大提高马铃薯回生抗性淀粉制备产率。RS3制备过程系为通过破坏纤维素等阻隔淀粉分子聚集的非淀粉物质提高制备产率,比将淀粉分子分解从颗粒结构中释放出以提高RS3制备产率更为有效。  相似文献   

10.
α-淀粉酶水解马铃薯淀粉制备抗性淀粉   总被引:4,自引:3,他引:4  
以马铃薯淀粉为原料,研究制备RS3型抗性淀粉制备工艺,以抗性淀粉制备产率为考察指标,探讨淀粉浓度、淀粉糊化温度、酶加量、作用时间、作用温度、老化温度和时间等对抗性淀粉产率影响。结果表明,马铃薯回生抗性淀粉最佳制备工艺参数分别为:淀粉乳浓度为10%、高压温度120℃、高压时间30min、α–淀粉酶加入量为120U/mL,淀粉溶液酶解时间30min、pH为6、老化温度4℃、老化时间12h,马铃薯回生抗性淀粉产率达1.126%。  相似文献   

11.
玉米抗性淀粉酶解法制备工艺的研究   总被引:3,自引:0,他引:3  
以抗性淀粉得率为评价指标,采用酶解法制备玉米抗性淀粉,通过正交试验确定了酶解法制备的最佳工艺条件:α-淀粉酶酶解条件为淀粉乳浓度20%,α-淀粉酶用量15u/g,酶解温度70℃;普鲁兰酶脱支条件为普鲁兰酶用量4u/g,脱支时间10h,pH值4.5;糊化条件为糊化时间20min,糊化温度120℃。  相似文献   

12.
试验以巴西种青香蕉为试材,在果浆酶、Amylase酶、p H、温度和时间等五个因素作用下,分别提取青香蕉中抗性淀粉,以单因素试验为基础,通过对酶解条件进行优化,从而得到纯度较高的青香蕉抗性淀粉,并对得到的抗性淀粉的透明度、溶解度、持水性及冻融稳定性等物理特性进行研究。结果表明,五个因素对RS纯度的影响大小依次是Amylase酶p H温度果浆酶时间,最佳的酶解工艺参数为:果浆酶用量0.15%,Amylase酶用量0.15%,作用p H 5,作用温度40℃,酶解时间1 h。由此得到的抗性淀粉纯度最高,为96.1%,通过对抗性淀粉透明度、溶解度、持水性及冻融稳定性等物理特性的研究表明,青香蕉抗性淀粉透明度、持水性较好,溶解度低,反复冻融的次数越多,糊化的冻融稳定性越高。  相似文献   

13.
郭丽  邬应龙 《食品科学》2013,34(8):76-81
以马铃薯淀粉为原料,三偏磷酸钠(STMP)和三聚磷酸钠(STPP)以质量比99:1的比例混合作为交联剂,制备交联马铃薯淀粉。以结合磷含量为指标,交联剂用量、反应pH值、反应温度和反应时间为因素,运用响应面法进行优化,确定最优工艺条件为交联剂用量为淀粉干质量的16%、反应时间4.5h、反应pH11.5、反应温度55℃;在最优工艺条件的基础上,通过改变交联剂用量制备一系列不同结合磷含量的交联淀粉并研究它们的体外消化性质。结果表明,随着交联马铃薯淀粉结合磷含量的增加,其所含的抗性淀粉也随之增加。  相似文献   

14.
以银杏为原料,研究α-淀粉酶水解制备银杏抗性淀粉工艺。以银杏抗性淀粉得率为指标,探讨α-淀粉酶用量、pH、酶解温度、酶解时间、高压处理温度、高压处理时间、老化温度和老化时间对银杏抗性淀粉得率的影响。结果表明,响应面法优化α-淀粉酶水解制备银杏抗性淀粉的最佳工艺条件:加酶量为8.0U/g,pH为5.8,酶解温度为88.7℃,酶解时间为19.3 min,高压处理温度为120℃,高压处理时间为35 min,老化温度为3℃,老化时间为24 h,在该工艺条件下银杏抗性淀粉得率可达24.12%。为银杏抗性淀粉的开发提供参考。  相似文献   

15.
玉米交联微孔淀粉制备工艺的研究   总被引:5,自引:0,他引:5  
徐忠  刘明丽 《食品科学》2007,28(2):94-98
研究了制备玉米交联微孔淀粉的工艺条件,以交联微孔淀粉的吸水、吸油率作为考察指标,通过单因素和正交试验,考察温度、时间、酶用量、酶配比、淀粉乳浓度、pH值对交联微孔淀粉吸水、吸油率的影响,结果确定最佳酶解工艺条件为:温度50℃,时间24h,酶量2.3%,淀粉乳浓度18%,pH值5.0,酶配比1:8,所得交联微孔淀粉的吸水、吸油率分别为163.21%、134.20%。  相似文献   

16.
以小麦淀粉为原料,六偏磷酸钠为交联剂,对小麦淀粉进行变性,制备食用小麦交联淀粉。以交联淀粉透过率和结合磷含量为指标,以六偏磷酸钠用量、反应p H、温度和时间为因素研究交联反应的最优工艺。研究结果显示,食用小麦交联淀粉制备的最佳条件为交联温度40℃、交联p H 10、交联时间1 h、交联剂用量0.25%。  相似文献   

17.
以薏苡仁为原料,采用酶解法制备薏苡仁淀粉。基于单因素试验,确定蛋白酶用量、酶解温度、酶解液pH和酶解时间为影响因素,以蛋白质残留量为指标,采用L9(34)正交试验设计方案优化薏苡仁淀粉酶法制备工艺。结果表明,薏苡仁淀粉酶法制备的最佳工艺参数组合为:碱性蛋白酶用量为250u/mL、酶解温度为45℃、酶解液pH为11、酶解时间2.5h,以此为条件制备所得的薏苡仁淀粉得率为54.39%,其蛋白质残留量为0.21%。  相似文献   

18.
以油莎豆淀粉为原料,通过高温α-淀粉酶水解,普鲁兰酶脱支,对淀粉进行连续处理,研究复合酶法油莎豆抗性淀粉的制备及纯化工艺条件,单因素及正交实验结果表明,油莎豆淀粉双酶法制备抗性淀粉酶解的最佳工艺条件是:高温α-淀粉酶添加量2μ/g、酶解温度95℃、酶解时间15 min。普鲁兰酶添加量15μ/g、酶解温度50℃、酶解时间20 h。此条件下制备的油莎豆抗性淀粉得率为39.48%,抗性淀粉含量为57.72%。  相似文献   

19.
李德海  马莺 《食品工业科技》2011,32(7):253-256,259
以异淀粉酶水解玉米淀粉制备的高直链玉米淀粉为原料,采用六偏磷酸钠为交联剂,制备交联酶解高直链玉米淀粉。采用响应面实验设计进行优化,结果表明,最佳工艺条件为:六偏磷酸钠的用量为3.12%、pH为11、温度为50℃、时间为2.2h,在此条件下制备的交联酶解高直链玉米淀粉沉降积为2.34mL。RVA和DSC分析表明,酶解高直链玉米淀粉经交联后淀粉的糊化温度、粘度和粘度稳定性较大程度上得到了提高。  相似文献   

20.
以马铃薯淀粉为原料,采用α-淀粉酶和普鲁兰酶相结合处理的方式制备马铃薯抗性淀粉,通过单因素试验分别考察了α-淀粉酶和普鲁兰酶的pH值、反应温度、反应时间、酶添加量对抗性淀粉(RS)得率的影响;进而采用Box-Behnken设计法对复合酶法制备马铃薯抗性淀粉的工艺参数进行优化;最终,采用Englyst法对马铃薯抗性淀粉消化性进行分析。结果表明,制备马铃薯抗性淀粉的最佳工艺条件为:α-淀粉酶,pH6.5、反应温度70℃、反应时间15 min、酶用量4 U/g;普鲁兰酶,pH值5.0、反应温度60℃、反应时间24 h、酶用量8 U/mL。此条件下,马铃薯抗性淀粉得率为(44.48±1.37)%。马铃薯淀粉经α-淀粉酶与普鲁兰酶联合处理后,不仅提高了其抗消化性,还使抗性淀粉(RS)得率显著提高,同时将马铃薯淀粉中快消化淀粉(RDS)降低至21.23%,而慢消化淀粉(SDS)增加至36.32%。该研究为后续马铃薯深加工及慢消化型食品开发提供一定的理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号