首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 890 毫秒
1.
玉米朊脱色用活性炭的筛选及其脱色工艺的优化   总被引:1,自引:1,他引:0  
针对现有玉米朊脱色技术研究中存在的不足,首先建立了玉米朊脱色效果的科学评价方法;其次,以玉米朊保留率和色素残存率为综合评价指标,对不同来源的商用活性炭产品进行了筛选;在此基础上,对影响活性炭脱色效果的因素如脱色时间、脱色温度等工艺参数进行了优化。结果表明,不同厂家生产的活性炭脱色效果存在显著差异,其中活性炭P的脱色效果最佳。优化的脱色工艺参数为:脱色时间1.5 h、固液比1∶75、玉米朊质量浓度40 mg/mL、脱色温度35℃、乙醇体积分数90%、溶液pH 7.0、脱色次数1次。验证试验表明,脱色溶液中玉米朊保留率为67.28%,色素残存率为21.07%,每毫克玉米朊中色素含量为4.609×10-2μg。  相似文献   

2.
玉米朊的活性炭脱色工艺研究   总被引:3,自引:0,他引:3  
马广亮  董英  徐斌 《食品科技》2007,32(2):261-264
系统研究了玉米朊的活性炭脱色工艺。以活性炭为脱色剂,对玉米朊的乙醇溶液进行脱色,并对影响活性炭脱色效果的因素进行了考察,对脱色的工艺条件进行了优化。结果表明:脱色的最佳工艺条件是温度50℃、活性炭与玉米朊的乙醇溶液的固液比2.5%(g/mL)、脱色时间为2h、乙醇浓度为90%、pH值为7,此时玉米朊乙醇溶液的吸光度为0.460;影响脱色效果的因素的主次顺序为乙醇溶液浓度>料液比>pH值>脱色时间。活性炭可用于玉米朊的脱色。  相似文献   

3.
为了揭示活性炭脱色玉米朊过程中活性炭对色素和蛋白的吸附机理,本研究首先对活性炭进行扫描电镜、比表面积及孔径分析,在此基础上研究活性炭对色素和蛋白的吸附动力学和热力学。结果表明,活性炭P的吸附能力、比表面和孔隙结构最佳,可作为研究对象;活性炭P对色素和蛋白的吸附均可以用Langmuir模型和Freundlich模型(R~20.92)描述;吸附动力学研究表明,活性炭吸附色素和蛋白过程中,伪二级动力学模型(R~20.99)占主导地位;吸附热力学研究表明,活性炭吸附色素和蛋白过程中,△G~00,△Ha~00,S~0△0,△G~0绝对值随温度升高而增大。活性炭对色素的吸附效果不仅受表面结构和比表面积影响,还与活性炭的微孔或中孔结构有关;活性炭以单层吸附与多层吸附共存的复杂吸附方式吸附黄色素,通过物理和化学复合吸附、膜扩散等共同作用脱除黄色素。  相似文献   

4.
以Cr(Ⅵ)离子吸附效果为目标,对磷酸活化法制备的脱墨污泥活性炭进行改性。通过改性效果对比,确定了HNO3改性方法,并对其改性工艺进行了优化。得到最佳改性条件为:10 mol/L的HNO3作为改性剂、炭酸比1∶15(m∶V)、改性2.0 h。改性后活性炭用于废水吸附以去除Cr(Ⅵ)离子,在改性活性炭用量为5.00 g/L时,Cr(Ⅵ)离子的去除率和吸附量分别达到83.9%和25.17 mg/g,与未改性活性炭相比,吸附量提高了140.3%。改性活性炭的碘吸附值和亚甲基蓝吸附值分别达到543.92 mg/g和103.5 mg/g,碘吸附值提高了28.9%,而亚甲基蓝吸附值略有降低。N2吸附 脱附表明,与未改性活性炭相比,HNO3改性活性炭比表面积从715.576 m2/g增至1020.161 m2/g,增大了42.6%;总孔容由0.353 cm3/g增长到0.608 cm3/g,提高了72.4%;中孔孔容由0.344 cm3/g增长到0.393 cm3/g,增长了14.2%。结果表明,HNO3改性可大幅提升脱墨污泥活性炭对Cr(Ⅵ)离子吸附性能。  相似文献   

5.
韩晓丹 《中国油脂》2020,45(11):9-13
以茶壳为原料制备氮掺杂活性炭,采用大孔树脂与氮掺杂茶壳活性炭联合使用的双重吸附工艺对油茶籽油同时进行脱酸脱色。对氮掺杂茶壳活性炭的制备条件进行了优化,并对所得油茶籽油的质量指标进行测定。结果表明:氮掺杂茶壳活性炭的最佳制备条件为以茶壳活性炭为碳源,以咪唑为氮源,咪唑浓度0.3 mol/L,活化温度850 ℃,活化时间60 min。在最佳工艺条件下,氮掺杂茶壳活性炭的比表面积为2 876 m2/g,总孔容为1.55 cm3/g,其中微孔孔容0.65 cm3/g,中孔孔容 0.55 cm3/g,大孔孔容0.35 cm3/g。所得油茶籽油无色透明,酸价(KOH)为0.14 mg/g,过氧化值为0.50 mmol/kg,达到了医用注射用油茶籽油的质量标准。  相似文献   

6.
以日常生活中废旧棉织物(WCF)为原料,采用氯化锌法活化制备了废旧棉织物活性炭(AC-WCF),考察了氯化锌质量分数ω、氯化锌浸渍时间t1、活化温度T和活化时间t2四个因素对AC-WCF吸附性能的影响。采用比表面积及微孔/中孔分析仪、扫描电镜(SEM)和红外光谱仪(FT-IR)对AC-WCF样品进行表征。结果表明,AC-WCF各项吸附性能良好,最佳制备工艺为:ω=45%,t1=16 h,T=700℃,t2=30 min,该条件下制备的AC-WCF的BET比表面积高达1462 m2/g,总孔容积0.78 cm3/g,平均孔径2.1 nm,碘吸附值(QI2)1193.8 mg/g,亚甲基蓝吸附值(QMB)25 ml/0.1g,苯酚吸附值(QPhOH)160.7 mg/g,且对模拟染料废水具有良好脱色效果。  相似文献   

7.
以核桃壳为原料,采用磷酸活化法制备核桃壳活性炭,表征活性炭对亚甲基蓝的吸附值、孔结构和表面形貌,考察吸附剂用量、吸附时间和pH对吸附效果的影响,并对吸附机理进行分析.结果表明,AC2颗粒大小不一,表面光滑,亚甲基蓝吸附值、比表面积和孔体积分别为16 mL/0.1 g、1127.8 m2/g、1.077 cm3/g.在酸...  相似文献   

8.
树脂对灵芝多糖色素吸附研究   总被引:1,自引:0,他引:1  
分别从树脂极性、离子型、比表面积和平均孔径等特征,研究比较了八种大孔吸附树脂和四种离子交换树脂对灵芝多糖溶液脱色性能的影响,得出色素主要为阴离子型分子,同时还有少量的非极性和弱极性分子,比表面>180m2/g,孔径>20nm的大孔吸附树脂和功能基团-NH2阴离子交换树脂为适宜脱色树脂,筛选出D392阴离子交换树脂为较好的吸附灵芝多糖色素树脂,从不同温度,不同树脂用量下研究静态脱色工艺,进一步研究得出色素类型粗略含量和适宜的pH,最终确定D392阴离子交换树脂吸附灵芝多糖色素的静态工艺.  相似文献   

9.
用氮气吸附法、扫描电镜对4种不同活性炭(木质活性炭AC1、AC2,煤质活性炭AC3,椰壳质活性炭AC4)的孔隙结构进行表征,通过抄纸方法制备活性炭过滤纸,用亚甲基蓝和苯酚吸附效率表征活性炭过滤纸的吸附性能,研究了活性炭孔隙结构对过滤纸吸附性能的影响.结果表明,两种木质活性炭的比表面积和总的孔容积较高,分别为1054 m2/g、1.165 cm3/g和1125 m2/g、1.083 cm3/g;4种活性炭微孔平均孔径相差不大,但两种木质活性炭的大中孔平均孔径较大;其中,木质活性炭AC2的微孔和大中孔孔容积均较大,孔径在0.64、1.2和2.3 nm附近的孔隙发达,具有较强的选择性吸收能力,用其抄造的过滤纸对亚甲基蓝和苯酚均有较好的吸附效率,3次过滤吸附效率分别为92.2%和93.8%.  相似文献   

10.
CO2活化烟杆制造活性炭及其孔结构表征   总被引:1,自引:0,他引:1  
为综合利用烟杆废弃物资源,以烟杆为原料,CO2为活化剂制备成活性炭。采用正交试验方法研究了CO2流量、活化时间和活化温度对活性炭得率及吸附性能的影响,同时测定了该活性炭的氮吸附等温线,并通过BET法、H-K方程、D-A方程和密度函数理论表征了活性炭的孔结构,还采用电子探针和透射电镜分析了活性炭的微观结构。结果表明:①适宜的工艺条件为活化温度800℃,时间30min,CO2流量3L/min,在此条件下制得的活性炭的得率为9.47%,碘吸附值为1079.26mg/g,亚甲基蓝吸附值为67.5mg/g;②所得活性炭为微孔孔型,BET比表面积为761m2/g,总孔体积为0.3521cm3/g,微孔体积占总孔体积的95.54%,中孔占3.85%,大孔占0.61%;③电子探针和电镜分析测定的活性炭的结构与氮吸附测定的结果较为一致。  相似文献   

11.
为优化南极磷虾蛋白肽脱色工艺,提高南极磷虾蛋白肽产品品质,采用活性炭吸附法脱除南极磷虾蛋白肽溶液中的色素,以脱色率和蛋白保留率为评价指标,分别考察活性炭用量、pH、脱色温度、脱色时间对脱色效果的影响,在单因素实验基础上,选择脱色温度50℃,采用响应面法优化南极磷虾蛋白肽脱色工艺。结果表明,采用粉末活性炭吸附脱除南极磷虾蛋白肽色素的最佳条件为:活性炭用量4.0%、pH1.5、脱色时间1.0 h;在此条件下,脱色率达到82.19%±0.20%,蛋白保留率为90.93%±2.28%。采用优化工艺对南极磷虾蛋白肽进行脱色处理,样品氨基酸组成中必需氨基酸与非必需氨基酸的占比以及样品的分子量分布不会发生明显变化。研究将为优质南极磷虾蛋白肽产品开发提供支撑。  相似文献   

12.
以活性白土和壳聚糖制备壳聚糖/活性白土复合脱色剂,糖汁脱色效果作为评价指标,分别考察制备过程中反应温度、反应时间、壳聚糖添加量、壳聚糖分子量等因素对其脱色效果的影响,获得最佳条件为:反应温度为60℃,反应时间为7 h,壳聚糖添加量为2.0 g,壳聚糖分子量为200万.该复合物的糖汁脱色率最高可达96.2%,明显优于活性...  相似文献   

13.
魏培培  马晓军 《食品科学》2011,32(8):138-142
为提高棉子糖产品的质量,采用活性炭对棉子糖提取液脱色。先利用单因素试验分别考察活性炭添加量(1~5g/100mL)、脱色温度(40~80℃)、pH值(4.5~5.5)、脱色时间(0.5~2.5h)对脱色效果的影响。而后在此基础上采用三因素三水平响应面分析法,依据回归分析确定较优脱色条件。结果表明,较优的脱色条件为活性炭添加量4g/100mL、脱色温度50℃、pH5.0、脱色时间2h。在此条件下脱色率可达94.6%,且棉子糖损失极小。采用活性炭对脱脂麦胚棉子糖提取液脱色可取得良好效果。  相似文献   

14.
To understand the nature of H2S adsorption onto carbon surfaces under dry and anoxic conditions, the effects of carbon pore structure and surface chemistry were studied using activated carbon fibers (ACFs) with different pore structures and surface areas. Surface pretreatments, including oxidation and heattreatment, were conducted before adsorption/desorption tests in a fixed-bed reactor. Raw ACFs with higher surface area showed greater adsorption and retention of sulfur, and heat treatment further enhanced adsorption and retention of sulfur. The retained amount of hydrogen sulfide correlated well with the amount of basic functional groups on the carbon surface, while the desorbed amount reflected the effect of pore structure. Temperature-programmed desorption (TPD) and thermal gravimetric analysis (TGA) showed that the retained sulfurous compounds were strongly bonded to the carbon surface. In addition, surface chemistry of the sorbent might determine the predominant form of adsorbate on the surface.  相似文献   

15.
活性炭吸附离子液体[BMIM]Cl的研究   总被引:1,自引:1,他引:0  
安小宁  朱小娟 《现代食品科技》2009,25(11):1239-1242
在静态条件下,采用活性炭粉末(ACP)与活性炭颗粒(ACG)列-离子液体氯化1-丁基-3-甲基咪唑[BMIM]Cl水溶液进行了吸附,比较了不同条件下ACP和ACG对离子液体水溶液中离子液体的吸附效果,确定了处理废水的pH值、活性炭用量、振荡时间、温度、离子液体的初始浓度等对吸附效果的影响.实验结果表明:在pH值为5,活性炭用量为2.5 g/L,温度40℃左右,吸附1h的条件下,活性炭粉末对质量浓度为80 mg/L的氯化1-丁基-3甲基咪唑水溶液的吸附量可达到15.7 mg/g,活性炭颗粒可达到22.5 mg/g,并比较了两种活性炭的吸附性能,发现活性炭颗粒从水中吸附[BMIM]Cl性能更优,这与XPS所得到的结果相吻合.  相似文献   

16.
张磊  郝露  徐山青 《纺织学报》2016,37(8):21-25
为实现废弃织物的综合利用,以废弃的棉/ 亚麻(50/50)混纺织物为原料,以氮气为载体,将水蒸气送入高温管式炉中进行活化制备活性炭。研究了活化温度、活化时间和水蒸气的载体流速对活性炭的比表面积、孔径分布的影响;利用废弃棉/ 亚麻活性炭的碘吸附量来表征其吸附能力,分析结构性能与吸附性能之间的关系。试验结果表明:随着活化温度、活化时间、水蒸气载体流速的增加,活性炭碘吸附量先增大后减小,而孔直径不断增大;当活化温度为800 ℃、活化时间为50min、水蒸气载体流速为240L/h时,活性炭比表面积及孔容达到最大,分别为1047.34m2/g和1.25cm3/g,孔直径在18nm左右,碘吸附量为805.16mg/g;当活化温度为750 ℃,活化时间为50min,水蒸气载体流速为240L/h 时,活性炭比表面积为648.25m2/g,孔直径为4nm左右,此时碘吸附量达到最大值,为1079.39mg/g。  相似文献   

17.
为了解活性炭孔隙结构及被吸附化合物的性质对吸附效率的影响,测定了纯丙酮气体在活性炭上的吸附特性及不同结构活性炭对烟气羰基物的吸附效率。分别用Langmuir模型和D-R模型对活性炭上丙酮气体的吸附数据进行拟合,从模型拟合精度及吸附热预测角度对Langmuir模型及D-R模型进行了比较。进一步分析了吸附效率与模型参数间的关系以及模型参数与活性炭结构和被吸附化合物性质间的关系。结果表明:①与Langmuir模型相比,D-R模型对活性炭上纯丙酮气体吸附数据的拟合相关系数更高,平均相对标准偏差更低,拟合结果更好。②由10-4-3型势函数计算得到活性炭上纯丙酮气体的理论吸附热为17.9 kJ/mol,吸附热较小,说明此吸附以物理吸附为主。D-R模型吸附热预测值为15.8 kJ/mol,与理论计算值较为接近;Langmuir模型吸附热预测值为40.7 kJ/mol,比理论计算值偏大较多。③实现活性炭对不同化合物吸附效率预测的关键是对化合物吸附热的预测。吸附效率主要与吸附温度,活性炭的用量、孔容,化合物的分子量,碰撞直径和能量参数有关。通过分析吸附能可以推断孔径对吸附效率及吸附选择性的影响。  相似文献   

18.
比表面积和孔结构是影响活性炭纤维吸附性能的重要因素。选用相同的活化工艺,制备相似孔结构和比表面积的活性炭毡和活性炭布,讨论在比表面积相近的情况下,活性炭纤维的形态和厚度对吸附性能的影响。结果表明:在一定条件下,活性炭毡的吸附性能略优于活性炭布,活性炭纤维的吸附能力并不随着活性炭织物厚度的增加而线性增强。  相似文献   

19.
以KHCO3为活化剂,采用高温热解和化学活化方法制备了改性玉米秸秆活性炭,用改性玉米秸秆活性炭对模拟废水进行脱色处理。影响脱色率的因素有活化剂与活性炭质量比、改性活性炭用量、温度、pH、吸附时间,采用L16(45)对这些因素进行正交实验,得出优化工艺为:活化剂与改性活性炭质量比2.0、改性活性炭用量0.65 g/L、温度35℃、pH=9、吸附时间180 min。在该工艺下,平均脱色率为94.28%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号