首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 812 毫秒
1.
基于NIR高光谱成像技术的滩羊肉内部品质无损检测   总被引:3,自引:2,他引:1       下载免费PDF全文
利用近红外高光谱成像技术对滩羊肉蛋白质和脂肪含量、pH值进行无损检测研究。通过高光谱系统(900~1700 nm)采集69个羊肉样本信息,先对全波段下的原始光谱和预处理后光谱建立偏最小二乘回归(PLSR)模型,对比优选出最佳预处理算法,后采用PLSR的加权β系数法提取特征波长,建立特征波长下各品质参数的PLSR模型,分析预测效果。结果表明:羊肉蛋白质、脂肪含量、pH值最佳预处理方法为基线校准(Baseline)、多元散射校正与S-G卷积平滑结合算法(MSC+SG)和原始光谱;利用特征波长建立预测模型,决定系数(RP2)分别为0.83、0.86和0.72,预测均方根误差(RMSEP)为0.57、0.09和0.12,可替代全波段建模。利用近红外高光谱成像技术对羊肉内部品质进行快速无损检测是可行的。  相似文献   

2.
利用400~1000 nm可见近红外高光谱成像系统对鸡肉嫩度进行快速无损检测研究。采集鸡肉表面的高光谱散射图像,提取样本感兴趣区域反射光谱曲线并用剪切力值表征鸡肉的标准嫩度。以原始光谱和多元散射校正(MSC)预处理光谱数据建立鸡肉嫩度的偏最小二乘回归(PLSR)模型,预处理光谱建立的模型效果更优。基于MSC预处理,采用偏PLS权重系数法结合逐步回归法筛选出了4个特征波长。然后采用PLSR和多元线性回归(MLR)模型分别建立特征波长处光谱反射值和鸡肉嫩度关系的数学模型,优选最佳模型。结果显示:MLR模型预测效果较好,预测相关系数(RP)和均方根误差(RMSEP)分别为0.94和1.97。研究表明:利用可见近红外高光谱成像技术结合多元回归分析法对鸡肉嫩度的快速无损检测是可行的。  相似文献   

3.
利用近红外光谱技术结合波长优选方法研究禽蛋新鲜度品质快速无损检测模型,采用蛋黄指数作为新鲜度评价指标。结果表明,蛋黄指数建立的检测模型效果要优于蛋白pH值和哈夫单位。通过连续投影算法(SPA)优选了4 188.6,4 593.6,4 855.9,5 311.0,5 376.6,5 935.8,6 306.1,7 243.3,7 328.2,7 343.6,8 130.4,8 531.5cm~(-1) 12个特征波谱为输入变量,建立蛋黄指数PLSR、PCR和SMLR检测模型,3种检测模型结果接近,其中,SMLR模型检测效果最好,相关系数r_(pre)=0.950,预测集均方根误差RMSEP=0.030,说明采用近红外光谱禽蛋蛋黄指数检测模型是可行的,通过波长优选后,检测精度较全光谱分析有所提高,该研究结果为进一步开发鸡蛋新鲜度的快速无损检测分级设备提供了理论依据和方法。  相似文献   

4.
利用可见近红外高光谱成像技术对宁夏赤霞珠葡萄含水量的无损检测进行了初步探讨。通过高光谱成像系统(400~1000 nm)采集了136幅赤霞珠葡萄图像,对原始光谱、平均平滑、高斯滤波、中值滤波、卷积平滑、归一化、多元散射校正、标准正态化、基线校准、去趋势化等预处理的偏最小二乘回归(PLSR)模型进行对比分析;采用主成分分析(PCA)、偏最小二乘回归(PLSR)、连续投影算法(SPA)、竞争性自适应重加权(CARS)方法选择特征波长,建立4种特征波长下的PLSR的葡萄含水量预测模型,优选CARS提取特征波长的方法。在此基础上,对比分析了全波段与特征波长下的MLR、PCR、PLSR的葡萄含水量预测模型。结果表明:采用多元散射校正(MSC)光谱建立的PLSR模型优于原始光谱和其他预处理光谱的PLSR模型;CARS提取特征波长建立的PLSR模型优于多元线性回归(MLR)、主成分回归(PCR)模型,预测集的相关系数(R)和预测均方根误差(RMSEP)分别为0.806、0.144。因此,利用可见近红外高光谱成像技术提取特征波长进行宁夏赤霞珠葡萄含水量的检测是可行的。  相似文献   

5.
利用高光谱成像系统(1000~2500 nm)对羊肉含水率进行无损检测研究。对108个羊肉样本进行光谱信息采集,通过标准正态变换法、归一化法、去趋势校正法、S-G卷积平滑法、导数法、多元散射校正法对原始光谱进行预处理,对全波段下的原始光谱和预处理后的光谱建立偏最小二乘回归(PLSR)模型,优选出的最佳预处理算法为去趋势校正法。原始数据经去趋势校正法预处理后,采用相关系数法选取特征波长,建立特征波长下羊肉含水率的 PLSR模型和逐步多元线性回归(SMLR)模型。结果表明,SMLR模型对含水率预测效果最好,校正集相关系数Rc为0.8597,标准误差SEC为0.0521;预测集相关系数Rp为0.8654,标准误差SEP为0.0387。研究表明,利用高光谱成像技术检测羊肉含水率是可行的。  相似文献   

6.
冷鲜羊肉品质的高光谱成像无损检测   总被引:1,自引:0,他引:1  
利用400~1000 nm可见近红外高光谱成像系统对冷鲜羊肉蛋白质含量、嫩度、p H进行无损检测研究。采集冷鲜羊肉表面的高光谱散射图像,提取样本感兴趣区域的反射光谱曲线获得原始数据。先对原始光谱预处理并建立偏最小二乘回归(PLSR)模型,优选最佳预处理方法,后采用正自适应加权算法(CARS)和连续投影算法(SPA)提取特征波长,建立不同特征波长下各品质参数的PLSR预测模型。结果表明:利用原始光谱建立的冷鲜羊肉蛋白质、嫩度和p H的PLSR模型均优于经过光谱预处理所建PLSR模型;在不同波长下建立预测模型,OS-PLSR光谱模型对冷鲜羊肉蛋白质含量预测效果最佳,Rp=0.869,RMSEP=0.097;建立的SPA-PLSR光谱预测模型对p H预测效果理想,Rp=0.958,RMSEP=0.067;CARS-PLSR光谱预测模型对嫩度的预测能力较高,Rp=0.862,RMSEP=0.706。研究表明:利用可见近红外高光谱技术对冷鲜羊肉品质进行快速无损检测是可行的。  相似文献   

7.
本文利用可见-近红外高光谱成像技术预测冷鲜滩羊肉脂肪含量,优选最佳预测模型。测定90个滩羊背最长肌的脂肪含量并采集其光谱图像,对原始光谱进行不同种预处理后,构建了全波段下的偏最小二乘回归(PLSR)和主成分回归(PCR)的光谱预测模型。为减少模型运算次数,在预处理效果最优的全波段模型上采用连续投影算法(SPA)、应用竞争性自适应重加权(CARS)、变量组合集群分析(VCPA)和波长空间迭代收缩(IVISSA)方法提取特征波长,构建脂肪含量的光谱预测模型。结果表明:采用归一化(Normlize)预处理后光谱构建的PLSR全波段模型效果最好,校正集模型相关系数(Rc)达到0.921;采用多元散射校正(MSC)预处理后光谱构建的PCR全波段模型效果最好,其校正集模型相关系数(Rc)达到0.850;在4种提取特征波长过程中,IVISSA算法所提取特征波长的交互验证均方根误差(RMSECV)最低,为0.0072;Normlize-IVISSA-PLSR模型较其他3种算法所构建的PLSR模型效果最优,其校正集相关系数(Rc)和预测集相关系数(Rp)值分别为0.931和0.754,表明利用高光谱技术对盐池滩羊肉脂肪含量进行预测是可行的。研究成果为冷鲜滩羊肉品质在线光谱快速无损检测系统开发提供理论依据。  相似文献   

8.
以宁夏滩羊肉为研究对象,利用400~1000 nm可见近红外高光谱对冷鲜羊肉的菌落总数和挥发性盐基氮含量进行新鲜度的检测研究。采集冷鲜滩羊肉表面光谱图像,提取感兴趣区域获取原始光谱数据。剔除由蒙特卡洛检测法所检测出的异常样本,采用理化值共生距离法(SPXY)划分样本的校正集和预测集。先对原始光谱预处理并建立偏最小二乘回归(PLSR)模型,优选最佳预处理方法;后采用主成分回归法(PCR)和支持向量机回归法(SVR)建立模型,优选最佳建模方法。结果表明:光谱数据经过正交信号校正(OSC)预处理后,建立的菌落总数和TVB-N含量预测模型效果较好,其RC分别为0.9067和0.9147,Rp分别为0.8743和0.8802,均高于其他光谱预处理模型。通过不同建模方法的比较,建模效果较好的是PLSR方法。研究表明:利用可见近红外高光谱技术可以实现对滩羊肉新鲜度的无损检测。  相似文献   

9.
利用光谱技术结合化学计量学对李子可溶性固形物含量检测进行研究,为李子品质无损检测提供科学方法。通过反射式光谱采集系统获取了"红"李子和"青"李子的平均光谱,并对原始光谱数据进行预处理;应用连续投影算法(SPA)和竞争性自适应重加权算法(CARS)对预处理后的光谱数据提取特征波长;分别建立基于全光谱和特征波长的预测李子可溶性固形物含量的误差反向传播(BP)网络模型。结果表明:利用SPA和CARS算法分别从全光谱的1024个波长中选取出31和104个特征波长;而基于特征波长建立的CARS-BP网络模型效果最优,其相关系数rc为0.998,rp为0.887,均方根误差RMSEC为0.026,RMSEP为1.767。这表明光谱技术结合化学计量学进行李子可溶性固形物含量的无损检测具有可行性。  相似文献   

10.
利用高光谱技术对灵武长枣果皮强度检测进行研究,为灵武长枣外部品质无损检测提供科学方法。采集120个灵武长枣的400~1000 nm的高光谱图像,对光谱数据进行预处理;应用连续投影算法(SPA)、正自适应加权算法(CARS)和无信息变量消除法(UVE)对原始光谱数据提取特征波长;分别建立基于全光谱和特征波长的偏最小二乘回归(PLSR)和最小二乘支持向量机(LS-SVM)果皮强度预测模型。结果表明:采用标准正态变换(SNV)预处理算法效果最优,其PLSR模型的交叉验证相关系数(Rcv)为0.8207,交叉验证均方根误差(RMSECV)为9.9630;利用SPA、CARS和UVE法从全光谱的125个波长中分别选取出29个、31个和31个特征波长;而基于全光谱建立的LS-SVM模型效果最优,其预测相关系数(Rp)为0.9555,预测均方根误差(RMSEP)为3.8282;研究结果表明基于高光谱成像技术采集的灵武长枣漫反射光谱进行果皮强度无损检测具有可行性。  相似文献   

11.
目的 比较反向传播神经网络(backpropagation algorithm neural network, BPNN)模型与偏最小二乘回归(partial least squares regression, PLSR)模型在预测芒果可溶性固形物含量(soluble solids content, SSC)方面的性能评估。方法 使用高光谱成像仪和全自动折光仪采集芒果的近红外高光谱及SSC数据建立两种预测模型, 通过采用多元散射校正(multiplicative scatter correction, MSC)进行光谱预处理, 利用遗传算法(genetic algorithm, GA)、区间变量迭代空间收缩算法(interval variable iterative space shrinkage algorithms, IVISSA)和变量组合群体分析算法(variable combination population analysis, VCPA)提取特征波长变量, 通过比较不同特征波长提取方法进一步优化对比预测模型。结果 与PLSR模型相比, BPNN模型在预测SSC方面更为有效。而在IVISSA特征波长变量提取后优化的BPNN模型预测能力最佳, 预测集判定系数 、均方根误差(root mean square error of prediction, RMSEP)、残差预测偏差(residual prediction deviation, RPD)分别为0.8641、0.3924和2.7127。结论 该模型可快速、准确地检测芒果的SSC, 并证明可见光-近红外高光谱成像与反向传播神经网络模型相结合有望预测芒果的SSC, 为开发在线芒果SSC无损检测系统奠定基础。  相似文献   

12.
以400~1 000nm高光谱系统获得鸡蛋样本的高光谱图像,利用蒙特卡洛法检测异常样本,采用不同预处理方法处理原始光谱;应用竞争性正自适应加权算法(Competitive Adaptive Reweighted Sampling,CARS)、遗传偏最小二乘法(Genetic Algorithms PLS,GAPLS)和间隔蛙跳法(Interval Random Frog,IRF)对预处理后光谱数据提取特征波长;分别建立基于全光谱和特征波长的偏最小二乘回归(Partial Least Squares Regression,PLSR)和最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)鸡蛋新鲜度预测模型。结果表明:标准正态变量变换(Standardized Normal Variate,SNV)法为最优预处理方法;利用CARS、GAPLS和IRF分别选出8,35,74个特征波长;基于GAPLS提取的特征波长的LS-SVM模型最优,其校正相关系数(Rc)为0.899,预测相关系数(Rp)为0.832。表明基于高光谱成像技术的鸡蛋新鲜度无损检测是可行的。  相似文献   

13.
目的 为实现鸡种蛋胚胎性别的无损检测,提出了基于可见-近红外高光谱检测海兰褐鸡种蛋胚胎性别的方法。方法 通过分析种蛋0~14 d大头部位的400~1000 nm波段下的光谱,建立基于偏最小二乘判别分析(PLS-DA)和支持向量机(SVM)的种蛋性别判别模型,比较不同孵育天数下的模型判别率,优选出最佳的检测天数;通过分析四种不同的预处理算法,选出最佳的鸡种蛋胚胎高光谱预处理方法,最后构建基于全波段和特征波段光谱信息的判别模型,并对结果进行比较。结果 基于PLS-DA和SVM的模型在第9 d的预测集结果达到最高,分别为80%和82.5%。主成分分析(PCA)结果表明,雄雌种蛋光谱信息可以进行区分;变量标准化(SNV)为最佳预处理方法;全波段相对于连续投影算法(SPA)、竞争性自适应重加权算法(CARS)选择特征波长的模型更优,建模集、预测集准确率分别为90%和85%。结论 研究结果表明可见-近红外高光谱技术可以快速、较准确、无损检测海兰褐种蛋胚胎性别,该技术为褐壳种蛋胚胎性别鉴定实现在线检测提供了一定的理论基础。  相似文献   

14.
目的 基于高光谱技术实现对小麦粉灰分含量的准确检测。方法 利用高光谱成像技术采集小麦粉的光谱数据,建立基于偏最小二乘法(partial least squares regression,PLSR)和深度极限学习机(deep extreme learning machines,DELM)的小麦粉灰分含量预测模型;通过分析3种预处理算法和4种波长选择算法,分别选出最佳的预处理与波长选择方法,最后构建基于特征波段光谱信息的预测模型,并对结果进行比较。结果 标准正态变量校正(standard normal variable,SNV)为最佳预处理方法;连续投影算法(successive projections algorithm,SPA)相较于随机森林(random forest,RF)、无信息变量消除(uninformative variable elimination,UVE)和遗传算法(genetic algorithm,GA)选择特征波长的模型更优;DELM模型更适用于灰分含量的检测,最优模型的测试集决定系数为0.968,预测集均方根误差为0.024。结论 高光谱成像技术可以快速、精准的...  相似文献   

15.
目的 利用高光谱成像技术建立库尔勒香梨分级指标的快速检测方法。方法 选择采摘期香梨作为研究样本, 以颜色(a*)、硬度(带皮硬度, Hardness)和可溶性固形物(soluble solids content, SSC)为研究指标, 使用高光谱成像系统采集样本900~1700 nm范围波长的漫反射光谱。提取样本感兴趣区域(region of interest, ROI)的光谱进行预处理, 采用多元散射校正(muliplication scattering correction, MSC)、标准正态变量变换(standard normal variable transformation, SNV)及其分别与卷积平滑滤波法(savitzky-golay, S-G)相结合的组合处理方法。基于不同的预处理结果建立偏最小二乘回归(partial least squares regression, PLSR)预测模型, 以验证集相关系数(Rv)和均方根误差(RMSEv)对模型进行评价。为进一步优化模型, 采用竞争性自适应重加权算法(competitive adaptive reweighted sampling, CARS)筛选特征波长, 并建立PLSR模型和最小二乘支持向量机(least square-support vector machine, LS-SVM)模型对比建模效果。结果 采用MSC-SG-PLS建立的模型判别准确率最高, 颜色预测模型的Rv和RMSEv值分别达到0.844和0.402; 硬度预测模型的Rv和RMSEv值分别达到0.823和0.417 kg/mm2; 可溶性固形物预测模型的Rv和RMSEv值分别达到0.902和0.301 %。采用CARS算法建立的LS-SVM模型效果最佳, 香梨颜色、硬度和SSC的模型预测值与标准理化值的相关系数分别为0.873、0.908和0.916, 均方根误差分别为0.375、0.385 kg/mm2和0.346 %。结论 研究表明, 利用高光谱成像技术可以实现库尔勒香梨多品质参数的无损检测。  相似文献   

16.
目的 使用高光谱成像技术实现对芒果轻微损伤的无损识别。方法 在可见光-近红外波长范围内采集完好芒果和损伤芒果的高光谱图像,并提取相应的感兴趣区域(regions of interest, ROI)获得样本高光谱数据。经过多种预处理方法比较,选择光谱预处理方法。使用竞争性自适应重加权算法(competitiveadaptivereweighted sampling, CARS)和连续投影算法(successive projections algorithm, SPA)分别对预处理后的光谱提取特征波长,并分别建立了多元线型回归(multiplelinearregression,MLR)模型和偏最小二乘回归(partialleastsquaresregression,PLSR)模型。结果 选择多元散射校正(multiplicative scatter correction, MSC)作为光谱预处理方法。针对芒果轻微损伤识别,CARS-MLR模型识别效果最好,其校正集相关系数为0.881,预测集相关系数为0.821,校正集均方根误差(calibration set root mean squa...  相似文献   

17.
目的:本研究利用高光谱成像技术结合机器学习研发一种快速检测鸡蛋中DHA与虾青素含量的技术。方法:利用高光谱成像仪采集全蛋、去壳鸡蛋和蛋黄在400-1000nm波长下的光谱数据,并使用高效液相色谱及气相色谱测定鸡蛋的DHA与虾青素含量。将样本集划分为训练集和预测集,分别采用Savitzky-Golay求导法、傅里叶变换法及小波变换法对原始光谱进行降噪处理。通过遗传算法对原始光谱及降噪后的光谱提取特征波长,分别建立特征波长与全蛋、去壳鸡蛋和蛋黄中DHA、虾青素的偏最小二乘法、支持向量机、bp人工神经网络预测模型。结果:在预测鸡蛋中DHA含量模型中,基于蛋黄特征光谱的模型预测能力最强。其中,一阶导数的差分步长为5的偏最小二乘法模型预测效果最好,其训练集、预测集的决定系数分别为0.999与0.985。在预测鸡蛋中虾青素含量的模型中,基于蛋黄特征光谱的预测能力最强。其中,二阶导数的差分步长为8的支持向量机模型预测效果最好,其中训练集、预测集的决定系数分别为0.942与0.960。结论:利用高光谱成像技术, 可以实现蛋黄中DHA和AST的快速检测。  相似文献   

18.
基于高光谱技术及SPXY和SPA的玉米毒素检测模型建立   总被引:1,自引:0,他引:1  
于慧春  娄楠  殷勇  刘云宏 《食品科学》2018,39(16):328-335
应用高光谱技术研究和构建霉变玉米黄曲霉毒素B1(aflatoxin B1,AFB1)和玉米赤霉烯酮(zearalenone,ZEN)含量的检测方法,通过建立霉变玉米中这2?种毒素含量的预测模型,实现对玉米霉变程度的快速、无损、准确判别。首先,通过对比5?种预处理方法,确定标准正态变量校正法对原始光谱数据进行预处理;然后,采用光谱-理化值共生距离算法结合偏最小二乘回归(partial least squares regression,PLSR)法分析不同校正集样本预测AFB1和ZEN含量的差异,并分别优选出130?个和140?个校正集样本;在采用均匀光谱间隔法对原始光谱变量进行初降维的基础上,对比连续投影算法(successive projections algorithm,SPA)和竞争性自适应重加权算法2?种变量提取法。结果表明:经SPA分别筛选出17?个特征波段且基于较少校正集样本和特征波长光谱信息建立的PLSR模型能够获得较优的预测结果,对应AFB1和ZEN含量预测集的相关系数和均方根误差(root mean square error of prediction,RMSEP)(R2pre,RMSEP)由最初的(0.994?4,0.984?6)和(0.991?6,2.320?9)分别变为(0.997?3,0.681?5)和(0.997?7,1.144?1),在降低模型复杂度的情况下提高了预测精度,表明该模型对这2?种毒素含量能够实现较强的预测能力。因此,利用高光谱技术对玉米AFB1和ZEN含量实施无损检测具有可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号