首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 89 毫秒
1.
水溶性大豆多糖和果胶作为酸性乳饮料稳定剂的研究   总被引:1,自引:0,他引:1  
通过改变酸性乳饮料的加工工艺比较了大豆多糖和果胶在稳定酸性乳饮料时的差异.结果表明,温度和调酸的顺序对添加了大豆多糖的酸性乳饮料稳定性的影响比对添加了果胶的酸性乳饮料稳定性的影响更为显著.在0℃时调酸和调酸之后均质的条件下,添加有0.40%大豆多糖的酸性乳饮料的稳定性最好,沉淀率最低为0.69%;而添加有0.35%果胶的酸性乳饮料的沉淀率为0.71%.而且进一步验证了大豆多糖能在pH值为3.4~4.4范围内稳定酸性乳饮料,而果胶只能在pH值为3.6~4.4范围内稳定酸性乳饮料.  相似文献   

2.
大豆渣水溶性大豆多糖提取工艺研究   总被引:2,自引:0,他引:2  
采用有机酸水溶液提取大豆渣中水溶性大豆多糖(SSPS),通过单因素实验,得到最佳工艺条件:温度110℃,提取时间1.5h,用酒石酸调节pH=3.8。该工艺蛋白质溶出率仅为2.18%;产品分子量由三部分组成,其中5.424×105为主要部分,水溶性大豆多糖得率达27.65%。  相似文献   

3.
王立峰  鞠兴荣  何荣  刘颖  耿菁  袁建 《食品科学》2010,31(24):111-114
以脱脂豆粕为材料,对豆粕中水溶性大豆多糖的提取、纯化进行研究。通过酶提取效果选择,在木瓜蛋白酶、碱性蛋白酶、复合蛋白酶3 种酶中选取提取效果最佳的碱性蛋白酶;通过从提取溶液的pH 值、提取时间、料液比、酶的添加量及提取温度等因素的试验分析比较,得出大豆多糖的最优提取条件。结果表明:当提取溶液pH 值、提取温度、提取时间和液料比分别为6.0、50℃、1.5h 和20:1(mL/g)时,豆渣中大豆多糖的提取率可达到最大值17.92%,粗多糖的纯度为86.32%。  相似文献   

4.
豆渣中水溶性大豆多糖提取工艺的研究   总被引:10,自引:1,他引:10  
采用正交实验法对豆渣中水溶性大豆多糖的提取过程进行研究,实验结果表明,第一次提取过程的优化工艺条件为:固液比为1∶8,提取时间4.5h,温度90℃,提取率为13.74%;整个提取过程的优化工艺条件为:固液比为1∶8,提取时间4.5h×3,温度80℃,提取率为53.96%。  相似文献   

5.
采用正交实验法对豆渣中水溶性大豆多糖的提取过程进行研究,实验结果表明,第一次提取过程的优化工艺条件为:固液比为1∶8,提取时间4.5h,温度90℃,提取率为13.74%;整个提取过程的优化工艺条件为:固液比为1∶8,提取时间4.5h×3,温度80℃,提取率为53.96%。   相似文献   

6.
水溶性大豆多糖的开发和应用   总被引:1,自引:0,他引:1  
  相似文献   

7.
目的提取3种常见大豆加工副产物豆腐渣、大豆蛋白渣和大豆皮中的水溶性大豆多糖(soluble soybean polysaccharides,SSPS),比较分析不同来源水溶性大豆多糖进行功能特性和基本结构。方法通过抗氧化性、乳化性和起泡性评价3种水溶性大豆多糖的功能特性,通过高效液相色谱和傅里叶变换红外光谱对3种水溶性大豆多糖的基本结构进行分析。结果豆腐渣中的水溶性大豆多糖(SSPSⅠ)具有最高的抗氧化性、乳化性和起泡性,大豆皮中的水溶性大豆多糖(SSPSⅢ)次之,大豆蛋白渣中水溶性大豆多糖(SSPSⅡ)的抗氧化性、乳化性和起泡性最差。傅里叶变换红外光谱和高效液相色谱的图谱表明,3种来源水溶性大豆糖在基本结构方面无显著性差异。结论不同来源的水溶性大豆多糖功能特性存在一定差异,而基本结构无显著性差异。  相似文献   

8.
亚临界水提取的水溶性大豆多糖的流变特性   总被引:1,自引:0,他引:1  
采用亚临界水提取大豆多糖,并研究大豆多糖质量浓度、金属离子浓度、pH值、蔗糖添加量对水溶性大豆多糖水溶液流变性及其黏度的影响。结果表明:水溶性大豆多糖水溶液为假塑性流体,其流体类型不随大豆多糖质量浓度、pH值的变化和金属离子、蔗糖的添加而改变;金属离子对水溶性大豆多糖的黏度影响很小,而水溶性大豆多糖的黏度随其质量浓度、蔗糖添加量及pH值的增大而上升,但与果胶相比黏度仍较低。采用亚临界水提取的大豆多糖具有稳定的流变特性,可作为添加剂应用于低黏度乳酸饮料和含糖饮料等食品中。  相似文献   

9.
超声波辅助提取水溶性大豆多糖及纯化工艺   总被引:3,自引:0,他引:3  
陈红  张波  刘秀奇  李红  王大为 《食品科学》2011,32(6):139-142
以脱脂挤压豆渣为原料,对超声波辅助提取水溶性大豆多糖及纯化工艺进行研究。通过单因素试验和正交试验,确定最佳工艺参数为提取pH4.5、热水温度90℃、液料比20:1(mL/g)、超声波功率200W、超声波提取时间40min时,水溶性大豆多糖的得率为8.82%。纯化粗多糖的条件为Sevag试剂中氯仿与正丁醇体积比3:1、萃取3次,所得纯化多糖的回收率为60.30%。  相似文献   

10.
豆渣中含有丰富的纤维素,从中可以提取出水溶性大豆多糖,该多糖特性优良。对该多糖进一步改性修饰之后,将其与淀粉作用,通过DSC实验发现:水溶性大豆多糖能显著降低老化淀粉的吸热焓,有效延缓淀粉的老化作用。水溶性大豆多糖的这种延缓淀粉老化的作用,可以延长食品货架期,对食品加工业有着重要意义。   相似文献   

11.
以水酶法提油后的副产物豆渣为原料,采用超声波协同纤维素酶法提取水溶性大豆多糖。在相同的超声波条件下(超声功率150W、超声温度88℃、超声时间17min、液固比28∶1、六偏磷酸钠溶液浓度2%)对水酶法提油后的豆渣进行预处理,在此基础上考察ViscozymeL复合纤维素酶对水溶性大豆多糖提取率的影响,首先对提取工艺进行单因素的选择,然后设计三因素三水平的正交实验,确定超声波协同纤维素酶法提取水溶性大豆多糖的最佳工艺条件为:液固比28∶1,酶解时间1.5h,酶解温度45℃,纤维素酶用量0.4%,pH4.0。在此条件下,超声波酶法的提取率为25.92%,与超声波法的水溶性大豆多糖的提取率(11.51%)相比,提高了14.41%。   相似文献   

12.
以豆渣为原料采用水热法提取大豆多糖,对固液比、温度、pH值、提取时间进行单因素试验,分析了各因素对粗多糖产率、还原糖含量、透明度、水溶性大豆多糖纯度的影响。采用4因素3水平正交试验对工艺进行优化,得到了优化的工艺条件。根据综合评分,选出最佳参数是:固液比1∶20(g∶mL),温度110 ℃,pH 4.5,提取时间3 h,所得粗多糖产率52.4%,还原糖含量3.86%,透明度86.14%,多糖纯度69.88%。  相似文献   

13.
以水溶性大豆多糖为壁材制备植酸酶微胶囊的研究   总被引:1,自引:0,他引:1  
研究水溶性大豆多糖与明胶复凝聚制备植酸酶微胶囊的方法。大豆多糖、明胶、植酸酶的混合比例分别为5∶1∶1时,高温处理不同时间后,微囊植酸酶的活力保留率最稳定,且保留了较高的活性;同时,比较了3种包被方法制备的植酸酶微胶囊的耐高温特性,以水溶性大豆多糖与明胶为壁材的复凝聚法制备的微胶囊,包被效果及耐高温特性最好。  相似文献   

14.
In this study, pectin polysaccharide (SDPP) was obtained from soybean dreg (26.2% yield), and characteristics of SDPP were compared with those of soybean soluble polysaccharides (SSPS) and citrus pectin (HMP). The galacturonic acid and molecular weight of SSPS, SDPP or HMP were 11.8%, 40.6% or 70.2% and 112, 446, or 440 kDa. SDPP had similar viscosity and protein content to SSPS, and functional groups and linear structure to HMP. SSPS, SDPP or HMP differed in particle size of 260, 467 or 1195 nm and ζ–potential of −5.8, −14.6 or −23.5 mV at pH 4.0. The precipitation of acidified milk drink (AMD) was 6.31% without stabiliser or below 1.75% with 0.4% SDPP at pH 3.6–4.6. These results suggested that SDPP combines the structure and characteristic of HMP and SSPS, and AMD with SDPP had great stabilising behaviour at wider pH range (pH 3.6–4.6).  相似文献   

15.
目的研究羧甲基化改性对不同分子量水溶性大豆多糖(soluble soybean polysaccharides,SSPS)乳化性的影响,探索进一步改善水溶性大豆多糖乳化性的方法。方法从豆渣中提取水溶性大豆多糖,使用超滤法分离,获得两种不同分子质量的多糖组分(L-低分子质量,H-高分子质量),分别对SSPS(未分离)、L和H进行羧甲基化改性,通过调节改性条件获得两种不同取代度(D-低取代度,G-高取代度)的水溶性大豆多糖。以不同的水溶性大豆多糖为乳化剂制备乳化液(O/W),对其乳化活性、乳化稳定性和乳化液显微结构进行分析。结果改性前后SSPS(未分离)、L和H的乳化性强弱顺序均为HSSPS(未分离)L;SSPS(未分离)和H的乳化活性在改性之后显著减弱(P0.05),且取代度越高乳化活性越弱,而L的乳化活性在改性之后增强,且取代度越高乳化活性越强;SSPS(未分离)和L的乳化稳定性在改性之后显著减弱(P0.05),但在取代度升高后二者的乳化稳定性又有所改善;H的乳化稳定性在改性之后显著减弱(P0.05),且取代度越高乳化稳定性越弱。结论高分子质量水溶性大豆多糖的乳化性优于低分子质量多糖,且这一规律不受改性的影响。在本试验条件下,羧甲基化改性对不同水溶性大豆多糖乳化性的影响不同,对乳化性的改善有一定的积极作用。  相似文献   

16.
17.
以大豆分离蛋白(soy protein isolates,SPI)和水溶性大豆多糖(soluble soybean polysaccharides,SSPS)为主要原料进行了可食性复合膜的制备与性质研究。综合考虑SPI与SSPS的比例、甘油、海藻酸钠添加量及钙离子浓度等影响因素,通过单因素与正交实验对成膜配方进行研究,得到了复合膜的最佳配比,并从水溶性、水蒸气透过性、抗拉伸强度、断裂延伸率等方面对膜的性质进行了综合评价。结果显示:在SPI∶SSPS质量比为1∶7,甘油添加量2%,海藻酸钠添加量4%,Ca2+浓度为1.0mol/L的条件下,复合膜的综合性能评分最高,为67.8。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号