首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L-天冬氨酸-β-脱羧酶(L-aspartate-β-decarboxylase,Asd)催化L-天冬氨酸脱羧生成L-丙氨酸,该研究对Acinetobacter radioresistens来源的Asd酶进行酶学性质解析,为工业生产L-丙氨酸提供参考。构建表达质粒pET28a-ArAsd,转化大肠杆菌E. coliBL21(DE3)实现ArAsd基因的异源表达。利用亲和层析纯化获得携带His标签的纯酶后进行酶学性质研究,并考察重组菌底物、产物耐受的能力。结果表明,重组酶比酶活力为753 U/mg,其最适催化温度为55℃,最适反应pH为4. 5,在40~45℃、pH 6. 0~7. 0条件下较稳定,45℃处理3 h酶活力剩余70%左右,pH 7. 0处理12 h酶活力剩余90%左右。产物L-丙氨酸浓度超过500 mmol/L时重组菌细胞酶活力有明显降低,底物L-天冬氨酸对重组菌细胞催化活性有促进作用。该研究首次在E. coli中异源表达Acinetobacter radioresistens来源Asd酶,其比酶活力高于目前已有报道的Asd酶,具有一定的工业应用潜力。  相似文献   

2.
为实现从L-谷氨酸到α-酮戊二酸(α-ketoglutaric acid,α-KG)的高效生物转化,将来源于白丝北里孢菌(Kitasatospora setae KM-6054)的L-谷氨酸氧化酶(L-glutamate oxidase,LGOX)在大肠杆菌(Escherichia coli)中实现异源表达,并研究其酶学特性。根据LGOX的氨基酸序列和大肠杆菌系统偏好性合成LGOX全基因序列,并通过pET28a(+)/DE3系统在大肠杆菌中实现了功能表达。诱导剂异丙基硫代半乳糖苷(isopropyl-β-D-thiogalactoside,IPTG)终浓度为0.1?mmol/L,20?℃诱导18?h,重组大肠杆菌粗酶液酶活力可达49.10?U/mL。亲和层析获得酶比活力为45.98?U/mg纯酶,十二烷基硫酸钠-聚丙烯酰氨凝胶电泳条带显示蛋白分子质量大小约为70?kDa。酶学性质研究表明:其最适反应温度和pH值分别为40?℃和6.0;Km值为1.23?mmol/L,Vmax值为76.24?μmol/(min·mg),L-谷氨酸为该酶的最适底物。本研究确定了LGOX在E.?coli?BL21中的异源表达及酶学特性,为生物转化合成α-KG提供了新的参考途径。  相似文献   

3.
对产卤代烷脱卤酶的重组大肠杆菌BL21(DE3)/pET28a-DhaA进行发酵优化以提高其表达量。该研究从TB培养基出发,通过单因素实验与响应面实验在摇瓶水平上对培养基各成分进行优化;其次,在最优培养基的基础上对发酵的工艺条件进行优化;最后,在5 L发酵罐中进行了初步放大验证。结果表明,最优的培养基组成为:甘油10 g/L,酵母粉23 g/L,蛋白胨14 g/L,MgSO4·7H2O 1.3 g/L,ZnSO4·7H2O 0.1 g/L,酶活力可达到(1 182.94±10.86) U/L,较初始培养基提高了94%;最优的发酵工艺条件为:接种量5%,装液量40 mL/250 mL,37℃培养至OD600为1.8时加入终浓度为0.4 mmol/L的异丙基-β-D-硫代半乳糖苷于20℃诱导22 h,酶活力可达到(3 585.83±15.02) U/L,提高至未进行优化前的5.87倍;5 L发酵罐初步放大验证实验中,酶活力最高达到(9 682.62±191.16) U/L,提高至摇...  相似文献   

4.
对重组大肠杆菌BL21(DE3)表达古菌基因的发酵条件进行了研究,最终确定葡萄糖浓度为10g/L,蛋白胨浓度为19g/L,酵母膏浓度为11.5g/L,硫酸铵浓度为4g/L,磷酸盐浓度为100mmol/L,硫酸镁浓度为10mmol/L。当菌体密度(OD600)达到7.0左右时,加入乳糖至终浓度1g/L,继续诱导培养8h,古菌高温酸性α-淀粉酶酶活力最高达192U/mL。在分析了该菌对葡萄糖利用情况的基础上,对该菌进行了pH-stat流加培养,36h菌体浓度与高温酸性α-淀粉酶活力分别达到67和600U/mL,比摇瓶最好结果分别提高了5.1和3.1倍。   相似文献   

5.
L-天冬氨酸α-脱羧酶活性较低,稳定性较差,使得其在工业应用中受到限制。该研究旨在提高L-天冬氨酸α-脱羧酶的催化性能,促进生物法生产β-丙氨酸的工业化进程。依据嗜热蛋白酶的氨基酸内在进化趋势,对赤拟谷盗来源L-天冬氨酸α-脱羧酶进行分子改造,以期提高稳定性。实验共构建21个突变体,获得催化性能优良的突变体K221R,该突变体的比酶活较野生型提高20. 3%;野生型经50℃处理30 min,残余酶活接近0,而突变体K221R的残余酶活为43%。建立了基因工程菌全细胞催化天冬氨酸生成β-丙氨酸的工艺,K221R菌株的产量达到134. 72 g/L,摩尔转化率为94. 52%,是迄今为止的最高产量。该研究构建的基因工程菌具有工业应用潜力,同时也为生物法制备β-丙氨酸提供理论与技术基础。  相似文献   

6.
为了对芽孢杆菌发酵产β-葡聚糖酶的培养基进行进一步的研究,以芽孢杆菌为发酵菌,通过单因素试验和三因素三水平正交试验法对芽孢杆菌的10L发酵罐发酵产酶培养基进行优化。实验结果表明:芽孢杆菌产β-葡聚糖酶的最优培养基为甘油含量6g/L、酵母粉含量24g/L和NaCl含量10g/L;发酵条件:接种量为10%、初始发酵pH值为7、培养温度为37℃、转速为350~950r/min、通风量为1vvm和发酵时间15h。经过3批发酵实验验证,最优条件下β-葡聚糖酶最高酶活可达3112U/mL。  相似文献   

7.
L-丙氨酸作为最小的手性化合物之一,被广泛应用于食品、医药和日化领域。目前,微生物法生产L-丙氨酸存在发酵周期长,生产强度低等问题。为此,通过强化前体供给、启动子工程和转运工程等代谢工程策略,构建高产L-丙氨酸的大肠杆菌细胞工厂。进一步通过生化工程策略优化L-丙氨酸生产工艺,提高L-丙氨酸大肠杆菌细胞工厂的生产性能。结果:过表达gapA (3-磷酸甘油醛脱氢酶基因)强化前体丙酮酸供给,使L-丙氨酸产量和转化率分别提高了5.1%和15.6%。启动子工程优化gapA表达,使L-丙氨酸产量和转化率进一步提高到18.3 g/L和0.55 g/g。过表达L-丙氨酸外运蛋白(AlaE),增加L-丙氨酸转运,使L-丙氨酸产量提高到20.4 g/L。生化工程策略优化培养基组分,得到最佳碳源为葡萄糖40 g/L,最佳氮源为(NH4)2SO4 25 g/L。最佳发酵条件为:接种量15%,10 h转厌氧发酵和变速补料发酵。5 L发酵罐发酵36 h,大肠杆菌菌株W-135 L-丙氨酸产量为127.2 g/L,转化率为0.83 g/g,生产强度为3.53 g/L/h,比优化前分别提高了64.3%,50.9%和64.2%。本研究利用系统代谢工程和生化工程策略,构建了发酵周期短和发酵工艺简单的L-丙氨酸高产菌株,为L-丙氨酸的工业化生产提供了理论基础。  相似文献   

8.
在前期工作中通过分子改造提高了来源于地衣芽孢杆菌(Bacillus licheniformis)α-淀粉酶在高温酸性条件下的稳定性,同时改良了催化效率。为了实现α-淀粉酶在大肠杆菌BL21(DE3)中的胞外高效表达,作者尝试采用共表达嗜热放线菌(Thermobifida fusca)角质酶来增强大肠杆菌膜透性,同时优化诱导策略以提高重组α-淀粉酶的胞外表达。首先构建了能同时表达角质酶和α-淀粉酶的工程菌BL21(DE3)/pETDuet-amy-cutinase,并将此菌株与能单独表达α-淀粉酶的工程菌BL21(DE3)/pET-20b-amy进行摇瓶和3 L发酵罐的产酶发酵对比。结果显示,共表达菌株在胞外产酶方面具有明显的优势。进一步对共表达菌株的诱导条件进行优化,在32℃、诱导剂为0.15μmol/L IPTG与0.5 g/(L·h)乳糖条件下,发酵32 h后胞外α-淀粉酶最高酶活力可达6.05×10~4U/m L,是单表达菌株摇瓶发酵水平的28.3倍。此时胞外重组α-淀粉酶质量浓度为8.92 g/L,重组蛋白质的分泌效率为93.2%。  相似文献   

9.
为实现大肠杆菌高效生产β-烟酰胺单核苷酸(β-nicotinamide mononucleotide,β-NMN),设计模块化代谢改造策略。首先,对烟酰胺(nicotinamide,NAM)和β-NMN支路代谢涉及的8个酶进行失活,减少底盘细胞对前体和产物的额外消耗。其次,通过引入NAM输入蛋白(Bc NiaP)、β-NMN输出蛋白(Bm PnuC)、5-磷酸核糖-1-焦磷酸合成酶(5-phosphoribosyl-1-pyrophosphate?synthetase,Prs)和烟酰胺磷酸核糖转移酶(nicotinamide?phosphoribosyl?transferase,Nampt),敲除调节蛋白PurR,工程菌N12’摇瓶发酵可积累0.34 g/L的β-NMN;此后,比对筛选发现Comamonadaceae?bacterium来源的Nampt活性较高且对底盘细胞负担较小;通过进一步强化Bm PnuC和Prs的表达水平,工程菌N18摇瓶发酵β-NMN产量提高至1.36 g/L。最后,利用发酵罐分批补料发酵38 h,β-NMN产量达到10.2 g/L,NAM到β-NMN的摩尔转化...  相似文献   

10.
报道了淀粉液化芽孢杆菌(Bacillusamyloliquefacien)BS5582菌株产β-葡聚糖酶和蛋白酶的液体发酵条件优化和酶学特性的研究结果。摇瓶水平下产β-葡聚糖酶的最佳培养基(g/L)为大麦粉40,玉米粉30,豆饼粉30,Na2HPO4·12H2O6,(NH4)2SO44,MgSO·47H2O1,CaCl20.8;产酶最佳起始pH7.0,装液量25mL/250mL。种子于37℃培养10h后,接种量8%,在37℃下发酵51.75h后β-葡聚糖酶酶活最高达到182.52U/mL,蛋白酶酶活达8062U/mL。β-葡聚糖酶的最佳反应pH6.5,最佳反应温度50℃。10mmol/L的Ca2+、Na+、NH4+、K+、Mg2+对β-葡聚糖酶活性有一定的激活作用;而相同浓度的Cu2+、Fe2+则表现出较强的抑制作用。   相似文献   

11.
选取突变体K49R进行分离纯化、酶学性质表征,并进行全细胞催化合成β-丙氨酸,旨在研究红粉甲虫来源的L-天冬氨酸-α-脱羧酶(L-aspartate-α-decarboxylase,ADC)的酶学性质,并为生物法制备β-丙氨酸提供理论与技术支持。突变体K49R最适pH为6. 5,在pH 6. 0~7. 0之间保持稳定;最适温度为42℃,热稳定性较野生型提高1. 7倍;底物亲和力大幅提高,催化效率是野生型的1. 8倍。在培养基中添加10 g/L葡萄糖可以有效提高重组菌的生物量,以及重组酶的可溶性表达量;在全细胞催化合成β-丙氨酸体系中,添加磷酸吡哆醛(pyridoxal-5-phosphate,PLP)可以缩短反应时间,提高催化效率。该研究开发了具有工业化潜力的工程菌,建立了绿色、高效的β-丙氨酸生物合成法,为β-丙氨酸生物合成的产业化奠定了重要基础。  相似文献   

12.
赵谋明  邹颖  林恋竹  吴见 《食品科学》2019,40(4):178-185
对纳豆枯草芽孢杆菌(Bacillus subtilis natto)液态发酵荞麦产纳豆激酶揺瓶、2.5 L发酵罐条件进行优化。对比自制大豆分离蛋白酶解物与商业大豆蛋白胨作为补充氮源时菌体生长规律以及代谢物质(酶、可溶性蛋白、还原糖、多酚及抗氧化物质)变化规律。纳豆菌液态发酵荞麦产纳豆激酶2.5?L发酵罐最优条件为荞麦浸泡6?h后,按料液比1∶10(g/mL)加水打浆,加入0.4%?α-淀粉酶,90?℃加热40?min,补充NS37071酶解12?h时所得酶解物,调节发酵培养基pH?7.0,接种量3%,通气量3.5?L/min,转速300?r/min,装液量1.2?L,发酵36?h。与商业大豆蛋白胨相比,补充大豆分离蛋白酶解物时,纳豆菌生长对数期较长,可溶性蛋白与还原糖的消耗量较大,在36?h趋于平稳,纳豆激酶活力持续上升至36?h达到最大值,酚类物质比溶出速率在12?h达到最大值,抗氧化物质比生成速率在6?h达到最大值。以荞麦为原料,补充自制大豆分离蛋白酶解物,通过优化纳豆菌液态发酵条件,可制备具有高纳豆激酶活力(152.5?FU/mL)、富含谷物多酚(0.109?mg/mL)且具有强抗氧化活性(27.43?μmol/mL)的发酵产物。  相似文献   

13.
L-氨基酸氧化酶可以催化L-氨基酸生成酮酸等化学品,具有重要的应用前景。本研究成功将来源于红球菌(Rhodococcus opacus)的氨基酸氧化酶在大肠杆菌中表达,并首次用于生物催化合成5-氨基戊酸。结果表明:L-氨基酸氧化酶诱导表达最适温度为25℃,最适诱导剂浓度0.5 mmol/L,最适诱导时间为7 h,诱导时最佳细胞量为0.246 g/L。催化合成5-氨基戊酸时,最适底物L-赖氨酸(Lys)浓度17 mmol/L,最适p H为7.0,最适温度为37℃,最适时间为24 h,最适补加0.5%H2O2,添加酶与黄素腺嘌呤二核苷酸(FAD)的最适摩尔比为1∶1,最终5-氨基戊酸产量达到16.71 mmol/L。本研究成功的实现了单酶(LAAO)合成5-氨基戊酸,为简便生物合成5-氨基戊酸奠定基础。   相似文献   

14.
在大肠杆菌中实现β-1,3-1,4-葡聚糖酶的高效分泌表达。将实验室自主开发的信号肽ff53与β-1,3-1,4-葡聚糖酶成熟肽基因(bgl)进行融合连接到p ET-28a(+)上;通过优化诱导表达条件,28℃、8 g/L乳糖诱导10 h,重组菌E.coli BL21/p ET-ff53-bgl发酵液上清中β-1,3-1,4-葡聚糖酶活力达到1093 U/m L,与IPTG诱导的重组菌E.coli BL21/p ET-bgl(583 U/m L)相比,提高了0.87倍。本研究为高密度发酵制备该酶奠定了基础。   相似文献   

15.
从土壤样品中筛选得到一株高产β-1,3-1,4-葡聚糖酶的真菌,经鉴定为泡盛曲霉(Aspergillus awamori),命名为Aspergillus awamori CAU33。依次采用单因素试验和响应面分析法优化了其液体发酵产β-1,3-1,4-葡聚糖酶的条件,得到该菌株产酶的最适条件为:玉米芯质量浓度55 g/L、大豆蛋白胨质量浓度25 g/L、曲拉通X-114质量浓度23 g/L、初始pH 4.5、培养温度35℃、培养时间6 d。在此条件下β-1,3-1,4-葡聚糖酶活力达到8 447 U/m L,为优化前的17.6倍。  相似文献   

16.
对重组大肠杆菌BL21(DE3)表达古菌基因的发酵条件进行了研究,最终确定葡萄糖浓度为10g/L,蛋白胨浓度为19g/L,酵母膏浓度为11.5g/L,硫酸铵浓度为4g/L,磷酸盐浓度为100mmol/L,硫酸镁浓度为10mmol/L.当菌体密度(OD600)达到7.0左右时,加入乳糖至终浓度1g/L,继续诱导培养8h,古菌高温酸性α-淀粉酶酶活力最高达192U/mL.在分析了该菌对葡萄糖利用情况的基础上,对该菌进行了pH-stat流加培养,36h菌体浓度与高温酸性α-淀粉酶活力分别达到67和600U/mL,比摇瓶最好结果分别提高了5.1和3.1倍.  相似文献   

17.
分离筛选高产转糖基活性β-半乳糖苷酶的乳源微生物,为高效合成低聚半乳糖(galacto-oligosaccharides,GOS)提供新酶源。以添加5-溴-4-氯-3-吲哚-β-D-半乳糖苷(X-Gal)的乳糖为碳源的乳酸细菌培养基(MRS)进行初级分离筛选,以产酶菌株粗酶液催化乳糖转糖基反应产物的薄层层析进行复筛,单因素优化最佳产酶条件和转糖基反应条件,硫酸铵分级沉淀纯化β-半乳糖苷酶并对其酶学特性进行初步分析。筛选获得产转糖基活性β-半乳糖苷酶乳酸菌20?株,选择产酶水平较高、转糖基活性最强的产β-半乳糖苷酶菌株L6进行进一步研究。生理生化和分子生物学鉴定确定L6菌株为Lactobacillus kefiri。该菌株在2?g/100?mL乳糖、1?g/100?mL氮源(蛋白胨、牛肉膏和酵母浸粉)及初始pH?5.5的条件下,37?℃培养20?h,产酶水平最高可达(3.81±0.02)U/mL。L6菌株所产β-半乳糖苷酶催化反应的温度范围较宽,45~70?℃均能保持50%以上相对酶活力。以45?g/100?mL乳糖为底物,该酶在65?℃、pH?7.0条件下,反应4?h生成转移二糖的得率为13.51%(m/m,下同),转移三糖为13.85%,转移三糖以上的GOS为4.15%。  相似文献   

18.
本文探究以甘油为唯一碳源发酵合成L-丙氨酸的可行性。以删除了乙酸、甲酸、乙醇、琥珀酸、乳酸代谢产物合成途径的Escherichia coli B0016-050为出发菌株,用λpL启动子及其调控下的嗜热脂肪芽孢杆菌(Geobacillus stearothermophilus)来源的丙氨酸脱氢酶基因(ala D)替换B0016-050菌株染色体上丙氨酸消旋酶基因(dad X),获得温度控制型L-丙氨酸合成菌株B0016-060BC。菌株B0016-060BC以甘油为唯一碳源进行两阶段发酵(包括菌体生长阶段和L-丙氨酸合成阶段),表明在菌体生长至对数后期起始L-丙氨酸合成或者提高L-丙氨酸发酵阶段的通气量可提高L-丙氨酸合成水平。进一步经5 L发酵罐发酵,可合成63.64 g/L L-丙氨酸,整个发酵阶段体积生产强度达到1.91 g/L h、转化率达到62.89 g/100 g甘油,仅合成少量的乙酸(1.73 g/L)等副产物。实现了以甘油为唯一碳源高效合成L-丙氨酸,为工业应用提供了重要参考。  相似文献   

19.
重组大肠杆菌产β-胡萝卜素的发酵条件   总被引:3,自引:0,他引:3       下载免费PDF全文
对重组大肠杆菌产β-胡萝卜素发酵条件进行了研究.在M9培养基中添加Span-200.7g/L有利于细胞生长和β-胡萝卜素表达,初始pH值6.0、接种体积分数5%、发酵温度28℃、抗生素氨苄青霉素质量浓度80μg/mL和氯霉素质量浓度40μg/mL为最佳发酵条件,在7L发酵罐进行发酵动力学试验表明,重组菌最适发酵周期为22h,细胞干重最高可达1.55g/L,β-胡萝卜素表达量可达0.75μg/mL。  相似文献   

20.
从保存的菌种中筛选到B_2和B_(13)2株菌,通过2步固态发酵,在山黧豆培养基中先接菌株B_2培养3d (37℃),灭菌后再接菌株B_(13),培养3d(37℃),灭菌后用0.2 mol/L的HClO_4在0~4℃提取1h,然后利用2,4-二硝基氟苯(FDNB)为柱前衍生试剂,通过高效液相色谱(HPLC),检测了对照和处理中α,β-草酰氨基丙氨酸(ODAP)的含量及降解率。结果发现,对照中β-ODAP和α-ODAP平均含量分别为1.146 mg/g和0.653 mg/g,处理中β-ODAP和α-ODAP的平均含量分别为0.203 mg/g和0.0909 mg/g,处理中的β-ODAP和α-ODAP比对照中的β-ODAP和α-ODAP的平均含量降低了82.2%和86%,而且发酵后处理的蛋白含量明显高于对照。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号