首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 15 毫秒
1.
This paper applies the Transferable Belief Model (TBM) interpretation of the Dempster-Shafer theory of evidence to estimate parameter distributions for probabilistic structural reliability assessment based on information from previous analyses, expert opinion, or qualitative assessments (i.e., evidence). Treating model parameters as credal variables, the suggested approach constructs a set of least-committed belief functions for each parameter defined on a continuous frame of real numbers that represent beliefs induced by the evidence in the credal state, discounts them based on the relevance and reliability of the supporting evidence, and combines them to obtain belief functions that represent the aggregate state of belief in the true value of each parameter. Within the TBM framework, beliefs held in the credal state can then be transformed to a pignistic state where they are represented by pignistic probability distributions. The value of this approach lies in its ability to leverage results from previous analyses to estimate distributions for use within a probabilistic reliability and risk assessment framework. The proposed methodology is demonstrated in an example problem that estimates the physical vulnerability of a notional office building to blast loading.  相似文献   

2.
This paper focuses on human behavior recognition where the main problem is to bridge the semantic gap between the analogue observations of the real world and the symbolic world of human interpretation. For that, a fusion architecture based on the Transferable Belief Model framework is proposed and applied to action recognition of an athlete in video sequences of athletics meeting with moving camera. Relevant features are extracted from videos, based on both the camera motion analysis and the tracking of particular points on the athlete’s silhouette. Some models of interpretation are used to link the numerical features to the symbols to be recognized, which are running, jumping and falling actions. A Temporal Belief Filter is then used to improve the robustness of action recognition. The proposed approach demonstrates good performance when tested on real videos of athletics sports videos (high jumps, pole vaults, triple jumps and long jumps) acquired by a moving camera and different view angles. The proposed system is also compared to Bayesian Networks.
M. RombautEmail:

Emmanuel Ramasso   is currently pursuing a PhD at GIPSA-lab, Department of Images and Signal located in Grenoble, France. He received both his BS degree in Electrical Engineering and Control Theory and his MS degree in Computer Science in 2004 from Ecole Polytechnique de Savoie (Annecy, France). His research interests include Sequential Data Analysis, Transferable Belief Model, Fusion, Image and Videos Analysis and Human Motion Analysis. Costas Panagiotakis   was born in Heraklion, Crete, Greece in 1979. He received the BS and the MS degrees in Computer Science from University of Crete in 2001 and 2003, respectively. Currently, he is a PhD candidate in Computer Science at University of Crete. His research interests include computer vision, image and video analysis, motion analysis and synthesis, computer graphics, computational geometry and signal processing. Denis Pellerin   received the Engineering degree in Electrical Engineering in 1984 and the PhD degree in 1988 from the Institut National des Sciences Appliquées, Lyon, France. He is currently a full Professor at the Université Joseph Fourier, Grenoble, France. His research interests include visual perception, motion analysis in image sequences, video analysis, and indexing. Michèle Rombaut   is currently a full Professor at the Université Joseph Fourier, Grenoble, France. Her research interests include Data Fusion, Sequential Data Analysis, High Level Interpretation, Image and Video Analysis.   相似文献   

3.
In this paper, we present the fusion of two complementary approaches for modeling and monitoring the spatio-temporal behavior of a fluid flow system. We also propose a mobile sensor deployment strategy to produce the most accurate estimate of the true system state. For this purpose, deterministic and statistical information was used. We adopted a filtering method based on a semi-physical model which derives from a fluid flow numerical model known as lattice Boltzmann model (LBM). The a priori physical knowledge was introduced by the Navier–Stokes equations which were discretized by the lattice Boltzmann approach. Moreover, its multiple-relaxation-time (MRT) variant not only improved the stability, but also enabled the introduction of additional degrees of freedom to be estimated like the synaptic weights of a neural network. The statistical knowledge was then introduced into the model by performing a sequential learning of these parameters and an estimation of the speed field of the fluid flow starting from measurements. The low spatial density of measurements, the large amount of data inherent to environmental issues and the nonlinearity of the generalized lattice Boltzmann equations (GLBEs) enjoined us to use the ensemble Kalman filter (EnKF) for the recursive estimation procedure. A dual state-parameter estimation which results in a significantly reduced computation time was used by combining two filters consecutively activated in the same iteration. Finally, we proposed to complete the lack of spatial information of the sparse-observation network by adding a mobile sensor, which was routed to the location where the cell-by-cell output estimation error was the highest. Experimental results in the context of the standard lid-driven cavity problem revealed the presence of few zones of interest, where fixed sensors can be deployed to increase performances in terms of convergence speed and estimation quality. Finally, the study showed the feasibility of introducing some additional parameters which act as degrees of freedom, to perform large-eddy simulation of turbulent flows without numerical instabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号