首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
About 480 nm thick titanium oxide (TiO2) thin films have been deposited by electron beam evaporation followed by annealing in air at 300–600 °C with a step of 100 °C for a period of 2 h. Optical, electrical and structural properties are studied as a function of annealing temperature. All the films are crystalline (having tetragonal anatase structure) with small amount of amorphous phase. Crystallinity of the films improves with annealing at elevated temperatures. XRD and FESEM results suggest that the films are composed of nanoparticles of 25–35 nm. Raman analysis and optical measurements suggest quantum confinement effects since Raman peaks of the as-deposited films are blue-shifted as compared to those for bulk TiO2 Optical band gap energy of the as-deposited TiO2 film is 3.24 eV, which decreases to about 3.09 eV after annealing at 600 °C. Refractive index of the as-deposited TiO2 film is 2.26, which increases to about 2.32 after annealing at 600 °C. However the films annealed at 500 °C present peculiar behavior as their band gap increases to the highest value of 3.27 eV whereas refractive index, RMS roughness and dc-resistance illustrate a drop as compared to all other films. Illumination to sunlight decreases the dc-resistance of the as-deposited and annealed films as compared to dark measurements possibly due to charge carrier enhancement by photon absorption.  相似文献   

2.
The present communication reports the effect of thermal annealing on the physical properties of In2S3 thin films for eco-friendly buffer layer photovoltaic applications. The thin films of thickness 150 nm were deposited on glass and indium tin oxide (ITO) coated glass substrates employing thermal vacuum evaporation technique followed by post-deposition thermal annealing in air atmosphere within a low temperature range 150–450 °C. These as-deposited and annealed films were subjected to the X-ray diffraction (XRD), UV–vis spectrophotometer, current–voltage tests and scanning electron microscopy (SEM) for structural, optical, electrical and surface morphological analysis respectively. The compositional analysis of as-deposited film is also carried out using energy dispersive spectroscopy (EDS). The XRD patterns reveal that the as-deposited and annealed films (≤300 °C) have amorphous nature while films annealed at 450 °C show tetragonal phase of β-In2S3 with preferred orientation (109) and polycrystalline in nature. The crystallographic parameters like lattice constant, inter-planner spacing, grain size, internal strain, dislocation density and number of crystallites per unit area are calculated for thermally annealed (450 °C) thin films. The optical band gap was found in the range 2.84–3.04 eV and observed to increase with annealing temperature. The current–voltage characteristics show that the as-deposited and annealed films exhibit linear ohmic behavior. The SEM studies show that the as-deposited and annealed films are uniform, homogeneous and free from crystal defects and voids. The grains in the thin films are similar in size and densely packed and observed to increase with thermal annealing. The experimental results reveal that the thermal annealing play significant role in the structural, optical, electrical and morphological properties of deposited In2S3 thin films and may be used as cadmium-free eco-friendly buffer layer for thin films solar cells applications.  相似文献   

3.
Lead sulfide (PbS) thin films were prepared on soda lime glass substrates at room temperature by Chemical Bath Deposition (CBD) technique. This paper reports a comparative study of characteristic properties of as-prepared PbS thin films after thermal treatment through two different routes. Studies were carried out for as-prepared as well as rapidly and gradually annealed samples at 100, 200 and 300 °C. The characterizations of the films were carried out using X-ray diffraction, scanning electron microscopy and optical measurement techniques. The structural studies confirmed the polycrystalline nature and the cubic structure of the films. As-deposited films partly transformed to Pb2O3 when gradually annealed to 300 °C. The presence of nano crystallites was revealed by structural and optical absorption measurements. The values of average crystallite size were found to be in the range 18–20 nm. The variation in the microstructure, thickness, grain size, micro strain and optical band gap on two types of annealing were compared and analyzed. Data showed that post deposition parameters and thermal treatment strongly influence the optical properties of PbS films. Optical band gap of the film gets modified remarkably on annealing. Direct band gap energy values for rapidly and gradually annealed samples varied in the range of 1.68–2.01 eV and 1.68–2.12 eV respectively. Thus we were succeeded in tailoring direct band gap energies by post deposition annealing method.  相似文献   

4.
In this work the effect of γ-irradiation on the optical and electrical properties of near stoichiometric AgInSe2 nanostructure thin films have been characterized. The XRD pattern of ingot AgInSe2 powder prepared by solid state reaction showed tetragonal polycrystalline single-phase structure. The thin films of thickness 75 nm were prepared by inert gas condensation (IGC) technique at using constant Ar flow and substrate temperature of 300 K.Thin films were exposed to annealing process at 473 K for 2 h in vacuum of 10−2 Torr. The amorphous and tetragonal nanocrystalline structures were detected for as-deposited and annealed films respectively by grazing incident in-plane X-ray diffraction (GIIXD) technique. The structure and average particle size of annealed irradiated films by different γ-doses from 0 to 4 Mrad were determined using high resolution transmission electron microscope (HRTEM). Optical transmission, reflection and absorption spectra were studied for both annealed unirradiated and irradiated films. Two optical transitions for each annealed unirradiated and film exposed to γ-irradiation doses from 0 to 4 Mrad were observed. The evaluated Eg1 due to 1st transition have decreased from 1.52 to 1.44 eV and Eg2 due to 2nd transition have decreased from 2.83 to 2.30 eV as the particle size increased from 7.3 to 9.5 nm by raising the irradiation dose up to 1 Mrad. The behavior of d.c. electrical conductivity with temperature that measured under vacuum was examined for all films under investigation. The evaluated activation energies due to irradiation doses are ranging from 0.58 to 0.68 eV.  相似文献   

5.
Zinc nitride films were deposited by reactive radio-frequency magnetron sputtering using a zinc target in a nitrogen and argon plasma. The deposited films were annealed in either air or O2 at 300 °C to investigate the annealing effect on the microstructure, optical properties, and electronic characteristics of zinc nitride films. It was found that the annealing process decreased the crystallinity of zinc nitride films. It was also found that the optical band gap decreased from 1.33 eV to 1.14 eV after annealing. The analysis of film composition suggested that the concentration of oxygen increased slightly after annealing. Although the conduction type of both as-deposited and annealed films were n-type, the annealed films exhibited a higher resistivity, lower carrier concentration and lower mobility than the as-deposited films. Also, it was found that the as-deposited films did not exhibit any photoconducting behavior whereas the annealed films exhibited a pronounced photoconducting behavior.  相似文献   

6.
Nanostructures of CdO thin films are prepared by chemical bath deposition (CBD) technique. The synthesized film is annealed in static air by using the hotplate at 373, 473, 573 and 673 K for 10 min. The effect of annealing temperature on structural, morphological, optical and electrical properties of CdO thin films has been investigated. The prepared thin films are characterised by X-ray diffraction (XRD), atomic force microscope (AFM), optical reflection microscope (ORM), UV–Visible Spectrophotometer and electrical resistivity. XRD shows the emergence of the cubic phase of CdO film in a preferred orientation (111) plane at 573 K. The AFM and ORM show that CdO films have smooth homogeneous surface in the formula with the emergence of nanoclusters gathering as nanoparticles with the average of grain size about 100 nm at 573 K. The optical properties prove that deposited films have high transparency within the visible range of the spectrum that reaches to more than 85% with a wide band gap that extends from 2.42 eV to 2.7 eV. The electrical properties of the CdO films show that resistivity decreases with increased annealing temperatures. In addition, it is proved that more than one activation energy appears and they change according to the temperature of annealing and this comes as a result of the polycrystalline structure. This study indicates that the properties of CdO thin films could be improved with annealing temperature and these films can be used in many technological applications.  相似文献   

7.
Tungsten trioxide thin films of ~300 nm thickness have been deposited on indium tin oxide coated glass and silicon substrates by thermal evaporation technique. Influence of annealing temperature on the structural, vibrational, morphological, optical and gas sensing properties of these films has been extensively studied to search out the possible applications in opto-electronic and gas sensing devices. From the studies of optical transmittance spectra it is observed that optical band gap decreases from 3.24 to 2.72 eV with increase in annealing temperature. It is also observed that because of annealing the photoluminescence yield of the films increases. All films, especially the annealed films have shown reasonably good gas sensing behavior in acetylene environment. The film annealed at 500 °C shows better optical as well as gas sensing behaviors and hence can have good device applications.  相似文献   

8.
Nanocrystalline CdO thin films were prepared onto a glass substrate at substrate temperature of 300 °C by a spray pyrolysis technique. Grown films were annealed at 250, 350, 450 and 550 °C for 2.5 h and studied by the X-ray diffraction, Hall voltage measurement, UV-spectroscopy, and scanning electron microscope. The X-ray diffraction study confirms the cubic structure of as-deposited and annealed films. The grain size increases whereas the dislocation density decreases with increasing annealing temperature. The Hall measurement confirms that CdO is an n-type semiconductor. The carrier density and mobility increase with increasing annealing temperature up to 450 °C. The temperature dependent dc resistivity of as-deposited film shows metallic behavior from room temperature to 370 K after which it is semiconducting in nature. The metallic behavior completely washed out by annealing the samples at different temperatures. Optical transmittance and band gap energy of the films are found to decrease with increasing annealing temperature and the highest transmittance is found in near infrared region. The refractive index and optical conductivity of the CdO thin films enhanced by annealing. Scanning electron microscopy confirms formation of nano-structured CdO thin films with clear grain boundary.  相似文献   

9.
CdS is one of the highly photosensitive candidate of II–VI group semiconductor material. Therefore CdS has variety of applications in optoelectronic devices. In this paper, we have fabricated CdS nanocrystalline thin film on ultrasonically cleaned glass substrates using the sol–gel spin coating method. The structural and surface morphologies of the CdS thin film were investigated by X-ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) respectively. The surface morphology of thin films showed that the well covered substrate is without cracks, voids and hole. The round shape particle has been observed in SEM micrographs. The particles sizes of CdS nanocrystals from SEM were estimated to be~10–12 nm. Spectroscopic properties of thin films were investigated using the UV–vis spectroscopy, Photoluminescence and Raman spectroscopy. The optical band gap of the CdS thin film was estimated by UV–vis spectroscopy. The average transmittance of CdS thin film in the visible region of solar spectrum found to be~85%. Optical band gap of CdS thin film was calculated from transmittance spectrum ~2.71 eV which is higher than bulk CdS (2.40 eV) material. This confirms the blue shifting in band edge of CdS nanocrystalline thin films. PL spectrum of thin films showed that the fundamental band edge emission peak centred at 459 nm also recall as green band emission.  相似文献   

10.
HfSiO dielectric films were prepared on Si substrate by the co-evaporation method. The chemical composition, crystalline temperature, optical and electrical properties of the compound film were investigated. X-ray photoelectron spectroscopy analysis illustrated that the atom ratio of Hf to Si was about 4:1 and Hf–Si–O bonds appeared in the film. The X-ray diffraction analysis revealed that the crystalline temperature of the film was higher than 850 °C. Optical measurements showed that the refractive index was 1.82 at 550 nm wavelengths and the optical band gap was about 5.88 eV. Electrical measurements demonstrated that the dielectric constant and a fixed charge density were 18.1 and 1.95×1012 cm−2 respectively. In addition, an improved leakage current of 7.81 μA/cm2 at the gate bias of −3 V was achieved for the annealed HfSiO film.  相似文献   

11.
Bismuth doped tin sulfide (SnS:Bi) thin films were deposited onto glass substrates by the spray pyrolysis technique at the substrate temperature of 350 °C. The effect of doping concentration [Bi/Sn] on their structural, optical and electrical properties was investigated as a function of bismuth doping between 0 and 8 at%. The XRD results showed that the films were polycrystalline SnS with orthorhombic structure and the crystallites in the films were oriented along (111) direction. Atomic force microscopy revealed that the particle size and surface roughness of the films increased due to Bi-doping. Optical analysis exhibited the band gap value of 1.40 eV for SnS:Bi (6 at%) which was lower than the band gap value for 0 at% of Bi (1.60 eV). The film has low resistivity of 4.788×10−1 Ω-cm and higher carrier concentration of 3.625×1018 cm−3 was obtained at a doping ratio of 6 at%.  相似文献   

12.
CdSe nanoparticle thin films were deposited on glass substrates by the chemical bath deposition (CBD) method at low deposition temperature ranging from room temperature up to 50 °C while the pH of the bath was kept constant at 12.1. The structural and morphological variation were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) technique. The energy band gap and optical properties were characterized by the absorbance spectra. Rutherford backscattering spectroscopy (RBS) analysis reveals the excess of Cd rather than Se in depth profile along the thin film thickness. The prepared CdSe nanoparticles have cubic structure and by increasing the temperature the deposited films become continues, homogeneous and tightly adherent. The results also revealed that by increasing the deposition temperature from room temperature up to 50 °C, the band gap decreases from 3.52 eV up to 1.84 eV.  相似文献   

13.
FeSe2 thin films were prepared at low temperature by thermal annealing at 350 °C during 6 h of sequentially evaporated iron and selenium films under selenium atmosphere. The structural, optical and electrical characteristics were investigated. The roughness of films (~76 nm) was confirmed by AFM images. Moreover, optical band gap of FeSe2, which was evaluated as nearly 1.11 eV and confirmed by the electrical study which yielded a value in the order of 1.08 eV. The electrical conductivity, conduction mechanism, dielectric properties and relaxation model of theses thin films were studied using impedance spectroscopy technique in the frequency range 5 Hz–13 MHz under various temperatures (180–300 °C). Besides, complex impedance and AC conductivity have been investigated on the basis of frequency and temperature dependence.  相似文献   

14.
The effects of rapid thermal annealing on properties of crystalline nanostructured CdTe films treated with CdCl2 and prepared by vacuum evaporation are described. X-ray diffraction confirmed the crystalline nature of post-treated films with high preferential orientation around 23.7°, corresponding to a (1 1 1) diffracted plane of cubic phase. Optical band gap of CdTe films increased from 1.4 eV to 1.48 eV after annealing at 500 °C for 90 s. Atomic force microscopy of annealed films revealed an increase in root mean square roughness and grain size with increased annealing time. Electrical measurements of as-grown and annealed films are consistent with p-type; film resistivity has decreased significantly with increased annealing time.  相似文献   

15.
CuAlO2 films were deposited on clean glass substrates by the acrylamide sol–gel dip coating technique. The coated films were dried in air oven for 30 min followed by heat treatment in air at different temperatures in the range of 350–500 °C. The films annealed at low temperatures exhibited weak x-ray diffraction (XRD) peaks. As the post anneal temperature increased beyond 375 °C, the XRD pattern exhibited the diffraction peaks of rhombohedral CuAlO2. Surface morphology of the films indicated that the films annealed at low temperatures exhibit small grains. As the annealing temperature increases larger grains are observed. The root mean square (rms) value of the surface roughness increases with annealing temperature. The films exhibited optical transmission above 75%. The films post annealed at low temperature exhibited lower transmission. Optical band gap in the range of 3.43–3.75 eV was obtained for the films annealed at different temperature. Hall measurements indicated p-type conductivity. Resistivity of the films decreased from 25.0 to 2.0 Ω cm as the anneal temperature increased. Mobility and carrier density increased with annealing temperature.  相似文献   

16.
The gas sensing behavior of thick films of Bi doped SnO2 has been investigated towards ethanol vapor. The screen printing technique was used to prepare the thick films. The films were sintered at 650 °C for 2 h. The structural, surface morphological, optical and gas sensing properties of undoped and Bi doped SnO2 thick films have been studied. X-ray diffraction and Raman spectroscopy confirmed that the films consisted exclusively of tetragonal tin oxide, without any impurity phases. FE-SEM studies revealed the formation of highly porous microstructure with grain size in few tens of nanometers. From the optical studies, the band gap was found to be decreased with bismuth doping (3.96 eV for undoped, 3.83 eV, 3.71 eV and 3.6 eV for 1 mol%, 2 mol% and 3 mol% Bi, respectively). The 3 mol % Bi doped SnO2 thick films exhibited the highest sensitivity to 100 ppm of ethanol vapor at 300 °C. The effect of microstructure on sensitivity, response time and recovery time of the sensor was studied and discussed.  相似文献   

17.
Indium-doped zinc oxide (ZnO) nanoparticle thin films were deposited on cleaned glass substrates by spray pyrolysis technique using zinc acetate dihydrate [Zn(CH3COO)2 2H2O] as a host precursor and indium chloride (InCl3) as a dopant precursor. X-ray diffraction results show that all films are polycrystalline zinc oxide having hexagonal wurtzite structure. Upon In doping, the films exhibit reduced crystallinity as compared with the undoped film. The optical studies reveal that the samples have an optical band gap in the range 3.23–3.27 eV. Unlike the undoped film, the In-doped films have been found to have the normal dispersion for the wavelength range 450–550 nm. Among all the films investigated, the 1 at% In-doped film shows the maximum response 96.8% to 100 ppm of acetone in air at the operating temperature of 300 °C. Even at a lower concentration of 25 ppm, the response to acetone in this film has been found to be more than 90% at 300 °C, which is attributed to the smaller crystallite size of the film, leading to sufficient adsorption of the atmospheric oxygen on the film surface at the operating temperature of 300 °C. Furthermore, In-doped films show the faster response and recovery at higher operating temperatures. A possible reaction mechanism of acetone sensing has been explained.  相似文献   

18.
Copper (Cu)-doped ZnO thin films were grown on unheated glass substrates at various doping concentrations of Cu (0, 5.1, 6.2 and 7.5 at%) by simultaneous RF and DC magnetron sputtering technique. The influence of Cu atomic concentration on structural, electrical and optical properties of ZnO films was discussed in detail. Elemental composition from EDAX analysis confirmed the presence of Cu as a doping material in ZnO host lattice. XRD patterns show that the films were polycrystalline in nature with (002) as a predominant reflection of ZnO exhibited hexagonal wurtzite structure toward c-axis. From AFM analysis, films displayed needle-like shaped grains throughout the substrate surface. The electrical resistivity was found to be increased with increase of Cu content from 0 to 7.5 at%. Films have shown an average optical transmittance about 80% in the visible region and decreased optical band gap values from 3.2 to 3.01 eV with increasing of Cu doping content from 0 to 7.5 at% respectively. Furthermore, remarkably enhanced photoluminescence (PL) properties have been observed with prominent violet emission band corresponding to 3.06 eV (405 nm) in the visible region through the increase of Cu doping content in ZnO host lattice.  相似文献   

19.
CuInS2 thin films were prepared by sol–gel dip-coating method on glass substrates using 0.75, 1 and 1.25 ratios of Cu/In in the solution. The prepared films were annealed at 380 °C, 420 °C and 460 °C for 30 min under argon environment. The structural, optical, morphological and composition properties of those were investigated by X-ray diffraction (XRD), UV–vis transmittance spectroscopy and scanning electron microscopy with an energy dispersive X-ray spectrometer. The XRD results showed that the films exhibit polycrystalline tetragonal CuInS2 phase with (112) orientation. According to the EDX results the Cu/In ratios of the films were respectively 0.65, 0.92 and 1.35 for the Cu/In ratios of 0.75, 1 and 1.25 in the solutions. The optical band gap was found to be between 1.30 eV and 1.43 eV, depending on Cu/In ratio.  相似文献   

20.
Nanoporous thin films of Cd1−xCuxS (0≤x≤0.06) were grown on a heated glass substrate employing a home-made spray pyrolysis technique. The influences of [Cu]/[Cd] and the annealing in the range 300–500 °C on the structural and morphological properties of the films were investigated by X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FTIR), field emission scanning electron microscope (FE-SEM) and atomic force microscopy (AFM). The influences of Cu doping ratio, solution flow rate, and the deposition time on the optical properties and photocatalytic activity of these films are also reported. The films are of polycrystalline nature and hexagonal structure. Increasing the Cu doping ratio and annealing temperature improve the (1 0 1) preferential orientation. The crystallite size is ranged from 23.82 to 32.11 nm. XRD and FTIR reveal the formation of CdO in the 6% Cu-doped CdS film annealed at 400 °C and in all films annealed at 500 °C. The pure CdS film is of a porous structure and the close-packing and porosity of the films increase with increasing Cu%. Also, the pore diameter can be controlled from 50 to 15 nm with the increase of Cu content. The films showed transmittance below 70%. The optical band gap of the films is decreased from 2.43 to 1.82 eV with increasing Cu% and flow rate/deposition time. Additionally, the refractive indices and dispersion parameters of the films are also affected by the deposition conditions. Cu doping enhanced the films' photostability as well as the photocatalytic removal of methylene blue (MB).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号