共查询到3条相似文献,搜索用时 0 毫秒
1.
Julián D. Arias-Londoño Author Vitae Juan I. Godino-Llorente Author Vitae Nicolás Sáenz-Lechón Author Vitae Author Vitae Germán Castellanos-Domínguez Author Vitae 《Pattern recognition》2010,43(9):3100-3112
This paper presents new a feature transformation technique applied to improve the screening accuracy for the automatic detection of pathological voices. The statistical transformation is based on Hidden Markov Models, obtaining a transformation and classification stage simultaneously and adjusting the parameters of the model with a criterion that minimizes the classification error. The original feature vectors are built up using classic short-term noise parameters and mel-frequency cepstral coefficients. With respect to conventional approaches found in the literature of automatic detection of pathological voices, the proposed feature space transformation technique demonstrates a significant improvement of the performance with no addition of new features to the original input space. In view of the results, it is expected that this technique could provide good results in other areas such as speaker verification and/or identification. 相似文献
2.
Luiz S. Oliveira Marisa Morita Robert Sabourin 《International Journal on Document Analysis and Recognition》2006,8(4):262-279
Feature selection for ensembles has shown to be an effective strategy for ensemble creation due to its ability of producing good subsets of features, which make the classifiers of the ensemble disagree on difficult cases. In this paper we present an ensemble feature selection approach based on a hierarchical multi-objective genetic algorithm. The underpinning paradigm is the “overproduce and choose”. The algorithm operates in two levels. Firstly, it performs feature selection in order to generate a set of classifiers and then it chooses the best team of classifiers. In order to show its robustness, the method is evaluated in two different contexts:supervised and unsupervised feature selection. In the former, we have considered the problem of handwritten digit recognition and used three different feature sets and multi-layer perceptron neural networks as classifiers. In the latter, we took into account the problem of handwritten month word recognition and used three different feature sets and hidden Markov models as classifiers. Experiments and comparisons with classical methods, such as Bagging and Boosting, demonstrated that the proposed methodology brings compelling improvements when classifiers have to work with very low error rates. Comparisons have been done by considering the recognition rates only. 相似文献
3.
In this work, we formalise and evaluate an ensemble of classifiers that is designed for the resolution of multi-class problems. To achieve a good accuracy rate, the base learners are built with pairwise coupled binary and multi-class classifiers. Moreover, to reduce the computational cost of the ensemble and to improve its performance, these classifiers are trained using a specific attribute subset. This proposal offers the opportunity to capture the advantages provided by binary decomposition methods, by attribute partitioning methods, and by cooperative characteristics associated with a combination of redundant base learners. To analyse the quality of this architecture, its performance has been tested on different domains, and the results have been compared to other well-known classification methods. This experimental evaluation indicates that our model is, in most cases, as accurate as these methods, but it is much more efficient. 相似文献