首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mercury oxidation by hydrochloric acid over the metal oxides supported by anatase type TiO2 catalysts, 1 wt.% MOx/TiO2 where M = V, Cr, Mn, Fe, Ni, Cu, and Mo, was investigated by the Hg0 oxidation and the NO reduction measurements both in the presence and absence of NH3. The catalysts were characterized by BET surface area measurement and Raman spectroscopy. The metal oxides added to the catalyst were observed to disperse well on the TiO2 surface. For all catalysts studied, the Hg0 oxidation by hydrochloric acid was confirmed to proceed. The activity of the catalysts was found to follow the trend MoO3 ~ V2O5 > Cr2O3 > Mn2O3 > Fe2O3 > CuO > NiO. The Hg0 oxidation activity of all catalysts was depressed considerably by adding NH3 to the reactant stream. This suggests that the metal oxide catalysts undergo the inhibition effect by NH3. The activity trend of the Hg0 oxidation in the presence of NH3 was different from that observed in its absence. A good correlation was found between the NO reduction and the Hg0 oxidation activities in the NH3 present condition. The catalyst having high NO reduction activity such as V2O5/TiO2 showed high Hg0 oxidation activity. The result obtained in this study suggests that the oxidation of Hg0 proceeds through the reaction mechanism, in which HCl competes for the active catalyst sites against NH3. NH3 adsorption may predominate over the adsorption of HCl in the presence of NH3.  相似文献   

2.
《Journal of Catalysis》2007,245(1):1-10
The redox mechanism governing the selective catalytic reduction (SCR) of NO/NO2 by ammonia at low temperature was investigated by transient reactive experiments over a commercial V2O5/WO3/TiO2 catalyst for diesel exhaust aftertreatment. NO + NH3 temperature-programmed reaction runs over reduced catalyst samples pretreated with various oxidizing species showed that both NO2 and HNO3 were able to reoxidize the V catalyst at much lower temperature than gaseous O2: furthermore, they significantly enhanced the NO + NH3 reactivity below 250 °C via the buildup of adsorbed nitrates, which act as a surface pool of oxidizing agents but are decomposed above that temperature. Both such features, which were not observed in comparative experiments over a V-free WO3/TiO2 catalyst, point out a key catalytic role of the vanadium redox properties and can explain the greater deNOx efficiency of the “fast” SCR (NO + NH3 + NO2) compared with the “standard” SCR (NO + NH3 + O2) reaction. A unifying redox approach is proposed to interpret the overall NO/NO2–NH3 SCR chemistry over V-based catalysts, in which vanadium sites are reduced by the reaction between NO and NH3 and are reoxidized either by oxygen (standard SCR) or by nitrates (fast SCR), with the latter formed via NO2 disproportion over other nonreducible oxide catalyst components.  相似文献   

3.
In 80% aqueous ethanol, TiO2 (anatase), ZrO2, ZnO, V2O5, Fe2O3 and Al2O3 photocatalyze the oxidation of iodide ion but CdO and CdS do not; the wavelength of illumination is 365 nm. However, Fe2O3 fails to bring in a sustainable photocatalysis in 60% aqueous ethanol. The photooxidation of iodide ion on TiO2, ZrO2, ZnO, V2O5 and Al2O3 in 60% aqueous ethanol was studied as a function of [I], amount of catalyst suspended, airflow rate, light intensity and solvent composition. The metal oxides examined show sustainable photocatalytic activity. Iodine formation is larger with illumination at 254 nm than at 365 nm. The mechanisms of photocatalysis on semiconductor and non-semiconductor surfaces have been discussed. Photocatalytic generation of iodine has been analyzed using a kinetic model. The photocatalytic efficiencies are of the order V2O5 > TiO2 > ZrO2 > ZnO > Al2O3 and V2O5 > TiO2 > ZrO2 > ZnO=Fe2O3 > Al2O3 in 60% and 80% aqueous ethanol.  相似文献   

4.
A series of γ-Al2O3, TiO2 (anatase) and mt-ZrO2 were impregnated with 1.0 wt.% of Cu or Fe and/or with 0.05 wt.% of Pt, Pd or Rh. The obtained samples were tested as catalysts of the selective catalytic oxidation of ammonia. An interesting class of zirconia and titania supported catalysts is based on copper. Modification of these catalysts with noble metals significantly decreased temperature of the ammonia oxidation. Platinum doped catalysts exhibited the highest activity, while rhodium based materials were the most selective catalysts in the studied temperature range. Catalytic performances of tested materials were consistent with their redox properties.  相似文献   

5.
The catalytic performance in the total oxidation of CO and methanol over gold catalysts supported on ceria doped by different metal oxides (Me = Fe, Mn and Co) was studied and a strong influence of the nature of dopant was observed. The activity towards the oxidation of CO and CH3OH was in the order: AuCeCo > AuCe > AuCeFe > AuCeMn. The characterization by XRD and HRTEM evidenced differences in the average size and the distribution of gold particles. AuCeCo catalyst exhibited superior low-temperature CO oxidation activity (100% conversion degree was obtained at 25 °C) and almost 100% total oxidation of CH3OH at about 40 °C. Higher hydrogen consumption was estimated by means of TPR over this catalyst. The effect of modification with Co3O4 of Au/CeO2 catalysts on their CO oxidation activity was further studied by varying of the dopant content (5, 10 and 15 wt.% Co3O4).  相似文献   

6.
7.
A series of vanadia doped TiO2-pillared clay (TiO2-PILC) catalysts with various amount of vanadia were studied for selective catalytic reduction (SCR) of NO by ammonia in the presence of excess oxygen. It was found that the V2O5/TiO2-PILC catalysts were highly active for the SCR reaction. The catalysts showed a broad temperature window, and the maximum NO conversion was higher than that on V2O5/TiO2 catalyst and was the same as the commercial V2O5 + WO3/TiO2 catalyst. The V2O5/TiO2-PILC catalysts also had higher N2/N2O product selectivities as compared to V2O5 doped TiO2 catalysts. In addition, H2O + SO2 slightly increased the activities at high temperatures (>350°C) for the V2O5/TiO2-PILC catalysts. Addition of WO3 to V2O5 further increased the activities of the PILC catalysts. These results indicate that TiO2-PILC is a good support for vanadia catalysts for the SCR reaction. In situ FT–IR experiment indicated that both Brønsted acid sites and Lewis acid sites exist on the catalyst surface, but with a large proportion being Brønsted acid sites at low temperatures (e.g., 100°C). The reaction path for NO reduction by NH3 on the V2O5/TiO2-PILC is similar to that on V2O5/TiO2 catalyst, i.e., N2 originates from the reaction between gaseous NO and NH3 adspecies.  相似文献   

8.
Effects of ferrite materials as supports (CoFe2O4, NiFe2O4, and Fe3O4) on nano-TiO2 were elucidated by their use in the oxidation of methylene blue. These photocatalysts, which were synthesized by co-precipitation, were characterized by XRD, SEM, EDS and VSM. The crystalline phase of TiO2 onto magnetic MFe2O4 was formed by anatase and rutile. TiO2/CoFe2O4 exhibited the strongest magnetic property of the prepared catalysts, and the photocatalytic efficiencies followed the order TiO2/CoFe2O4 > TiO2/NiFe2O4 > TiO2/Fe3O4. MB decolorization was enhanced with the amount of TiO2 on the photocatalyst, and was moderately affected by the extent of structural distortion of ferrite supports.  相似文献   

9.
Alkyl substituted thiophenes are promising candidates for hydrogen carriers, as their dehydrogenation reactions are known to occur under mild conditions. Four types of catalysts, including supported noble metals, bimetallic noble metals, transition metal phosphides and transition metal sulfides, have been investigated for 2-methylthiophene (2MT) hydrogenation and ring-opening. The major products were tetrahydro-2-methylthiophene (TH2MT), pentenes and pentane, with very little C5-thiols observed. The selectivity towards the desired product TH2MT follows the order: noble metals > bimetallics > phosphides > sulfides. The best hydrogenation catalyst was 2% Pt/Al2O3 which exhibited relatively high reactivity and selectivity towards TH2MT at moderate temperatures. Temperature-programmed reaction (TPR) experiments revealed that pentanethiol became the major product, especially with HDS catalysts like CoMoS/Al2O3 and WP/SiO2.  相似文献   

10.
A comparative study between LaGa1−xCuxO3 perovskites and ZnGa2O4 was conducted to clarify the correlation between crystal structure and redox properties as well as catalytic performance for the reduction of NO by C3H6. The oxidation ability of the prepared catalysts decreases following the order LaGa0.8Cu0.2O3 > LaGaO3 > ZnGa2O4. Perovskites, with the general composition of LaGa1−xCuxO3, were found to be suitable materials for NO reduction under scarce oxygen conditions, whereas excess oxygen (O2 > 1%) led to a significant decline in N2 yield. On the contrary, the presence of O2 is necessary for NO conversion to N2 over the ZnGa2O4 spinel, whose SCR activity was moderately enhanced at higher oxygen concentrations. The poor oxidation ability of ZnGa2O4 makes it as a promising candidate for lean NO reduction.  相似文献   

11.
This paper deals with the systematic study of Fe/HBEA zeolites for the selective catalytic reduction (SCR) of NOx by NH3 in diesel exhaust. The catalysts are prepared by incipient wetness impregnation of H-BEA zeolite (Si/Al = 12.5). The SCR examinations performed under stationary conditions show that the pattern with a Fe load of 0.25 wt.% (0.25Fe/HBEA) reveals pronounced performance. The turnover frequency at 200 °C indicates superior SCR activity of 0.25Fe/HBEA (8.5 × 10−3 s−1) as compared to commercial Fe-exchanged BEA (0.99 × 10−3 s−1) and V2O5/WO3/TiO2 (1.0 × 10−3 s−1). Based upon powder X-ray diffraction (PXRD), temperature programmed reduction by H2 (HTPR), diffuse reflectance UV–vis spectroscopy (DRUV–VIS) and catalytic data it is concluded that the pronounced performance of 0.25Fe/HBEA is substantiated by its high proportion of isolated Fe oxo sites. Furthermore, isotopic studies show that no association mechanism of NH3 takes place on 0.25Fe/HBEA, i.e. N2 is mainly formed from NO and NH3.The evaluation of 0.25Fe/HBEA under more practical conditions shows that H2O decreases the SCR performance, while CO and CO2 do not affect the activity. Contrary, SCR is markedly accelerated in presence of NO2 referring to fast SCR. Moreover, hydrothermal treatment at 550 °C does not change SCR drastically, whereas a clear decline is observed after 800 °C aging.  相似文献   

12.
《Ceramics International》2017,43(4):3818-3823
Previous work has shown that both TiN and TiO2 coatings can inhibit the metallic catalytic coking effectively, but both of them have their own shortage. In this work, TiC coating was prepared on the surface of SS304 tube using TiCl4-CH4-H2 by CVD method. Its morphology, elemental composition, thickness and oxidation resistance were characterized by SEM, EDX, metalloscopy and TPO tests, respectively. The results show that CVD TiC coating is gray, homogeneous, and dense without cracks or holes. The TiC coating presents a cuboid particle structure with the sizes of about 1.0 µm for the cuboid crystals, and the Ti/C ratio close to 1:1, while the average thickness is about 11.62 µm. TPO results show that the TiC coating begins to react with O2 and release CO2 at about 810 °C. Compared with the TiN coating (The initial oxidation temperature of TiN is about 350 °C), the oxidation resistance of TiC coating is improved substantially. As a conclusion, the high oxidation resistance order is TiO2 coating>TiC coating>TiN coating. Furthermore, the temperature programmed cracking of RP-3 Chinese jet fuel was employed to compare the anti-coking performance of TiN, TiO2 and TiC coatings. The results show that each of TiN, TiO2 and TiC coating has obvious anti-coking effect, and the anti-coking performance order is TiN coating=TiC coating>TiO2 coating.  相似文献   

13.
This study investigated the gas sensor fabricated with TiO2 added with metal oxide and catalyst to detect the main mixed gases, usually generated when the meat begins to decay, in order to measure the change in freshness according to protein denaturation. In particular, when fish begins to decompose, TMAO (trimethylamine oxide) is transformed into TMA (trimethylamine) by enzymes to regulate the salinity in fish, which is the major cause of fishy smell. The thick-film semi-conductor gas sensor for trimethylamine and ammonia mixed gas was fabricated with WO3–TiO2 prepared by sol–gel and precipitation methods. The nanosized TiO2 was mixed with WO3 and doped with transition metals (Pt, Ru, Pd and In). Particle sizes, phases and specific surface areas of sensor materials were investigated by SEM, XRD and BET analyses. The metal-TiO2 thick films were prepared by screen-printing method onto Al2O3 substrates with platinum electrode. It was shown that the highest sensitivity and selectivity of the sensor for trimethylamine and ammonia mixed gas by doping with 1 wt.%In and 15 wt.% WO3 was reached at the optimum operating temperature of 350 °C.  相似文献   

14.
A series of Pt/Sn/M/γ-Al2O3 catalysts with different third metal (M = Zn, In, Y, Bi, and Ga) were prepared by a sequential impregnation method for use in the direct dehydrogenation of n-butane to n-butene and 1,3-butadiene. In the direct dehydrogenation of n-butane, Pt/Sn/Zn/γ-Al2O3 catalyst showed the best catalytic performance. Catalytic performance decreased in the order of Pt/Sn/Zn/γ-Al2O3 > Pt/Sn/In/γ-Al2O3 > Pt/Sn/γ-Al2O3 > Pt/Sn/Y/γ-Al2O3 > Pt/Sn/Bi/γ-Al2O3 > Pt/Sn/Ga/γ-Al2O3. The catalytic performance increased with increasing metal–support interaction and Pt surface area of the catalyst.  相似文献   

15.
Catalytic reduction of SO2 to elemental sulfur by CO has been systematically investigated over γ-Al2O3-supported sulfide catalysts of transition metals including Co, Mo, Fe, CoMo and FeMo with different loadings of the metals. The sulfided CoMo/Al2O3 exhibited outstanding activity: a complete conversion of SO2 was achieved at a temperature of 300°C. The reaction proceeds catalytically and consistently over time and most efficiently at a molar feed ratio CO/SO2 = 2. A precursor CoMo/Al2O3 oxide which experienced sulfurization through the CO–SO2 reaction yielded a working sulfide catalyst having a yet lower activity than the CoMo catalyst sulfided before reaction (pre-sulfiding). The catalytic activity of various metal sulfides decreased in order of 4% Co 16% Mo > 4% Fe15% Mo > 16% Mo  25% Mo > 14% Co  4% Co > 4% Fe. A DRIFT study showed that CO adsorbs exclusively on CoMo phase and that SO2 predominantly on γ-Al2O3. It is suggested that the Co–Mo–S structure is more adequate than the other metal-sulfur structures for the formation of a carbonyl sulfide (COS) intermediate because of the proper strength of metal–sulfur bond, and catalytically works with γ-Al2O3 for the COS–SO2 reaction.  相似文献   

16.
The effects of mercury oxidation on V2O5–WO3/TiO2 SCR catalyst's physical and chemical properties have been investigated. Both fresh catalyst and mercury exposed catalyst have been examined by BET, XRD, XPS and catalytic activity measurements. Mercury oxidation promoted the V5 + species transforming to the V4 + species and consumed the lattice oxygen on the surface of catalyst. In addition, the NO conversion of mercury exposed catalyst decreased in the range of 200 °C to 300 °C. It suggested a competitive relationship between gaseous NH3 and adsorbed mercury on the catalyst surface in that temperature range.  相似文献   

17.
Copper and manganese based catalysts with different supports were prepared by impregnation method for toluene oxidation in the presence of water vapor. Their catalytic activity was tested in the absence and presence of water vapor. The results showed that the activity of catalysts CuMn(y)Ox/γ-Al2O3 was higher than that of catalysts CuOx/γ-Al2O3 and MnOx/γ-Al2O3. The presence of water vapor had a negative effect on catalytic activity due to the competition of water molecules with toluene molecules for adsorption on surface active sites. The durability to water vapor followed the order: CuMn(1)Ox/Cordierite > CuMn(1)Ox/TiO2 > CuMn(1)Ox/γ-Al2O3.  相似文献   

18.
Ag3PO4 catalysts exhibited excellent photocatalytic performance in the degradation and the mineralization of bisphenol A, displaying considerably higher photocatalytic activity than N–TiO2 under visible light (λ > 420 nm). The trapping effects of different scavengers and spectrophotometric results proved that the oxidation of bisphenol A mainly occurred at photogenerated holes on the Ag3PO4 surface, along with a two-electron reduction of dissolved oxygen to H2O2.  相似文献   

19.
The catalytic wet air oxidation of aqueous solutions of p-hydroxybenzoic acid has been carried out over CeO2–TiO2 supported ruthenium catalysts (Ru/Ce–Ti) at 140 °C and 50 bar of air. High activity of ruthenium supported catalysts was observed. It was found that the decrease of the molar ratio Ce/Ti from 3 to 1/3, improves the activity of Ru catalysts. The activity of the samples decreases in the following order: Ru/Ce–Ti (1/3) > Ru/CeO2  Ru/TiO2 > Ru/TiO2DT51. Characterization of samples was performed by means of N2 adsorption–desorption, XRD, UV–visible, TPR, SEM and TEM.  相似文献   

20.
The catalysts SO42  Mn–Co–Ce/TiO2/SiO2 were investigated for the low-temperature SCR of NO with NH3 in the presence of SO2. An excellent SO2 durability at low temperature was obtained with the catalyst used TiO2/SiO2 as support and modified with SO42 . The catalyst sulfated with 0.1 mol/L H2SO4 solution and then calcined at 300 °C exhibited the best NOx conversion efficiency of 99.5% at 250 °C in the presence of 50 ppm SO2. The conversion efficiency did not decrease after repeatedly used for 8 times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号