首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin films of Fe and Cu-codoped CdO (CdO:Cu:Fe) with different Fe content and fixed Cu content were deposited in a high vacuum on glass and Si wafer substrates. These films were studied by X-ray fluorescence (XRF), X-ray diffraction (XED), optical spectroscopy, and dc-electrical measurements. The structural results show enhancement of film [1 1 1] orientation with Fe doping especially with 1.3%Fe film. Also, light doping with Fe improves the dc-conduction parameters of the CdO:Cu:Fe films so that the utmost enhancement of mobility (90.5 cm2/Vs) and conductivity (1470.6 S/cm) was found with 1.3 wt% Fe doping level. It was found that the variation in the bandgap is related to the variation in electron concentration that caused by Fe doping. For low Fe ion concentration (<1.3 wt% ), the bandgap varies according to the Moss–Burstein model.  相似文献   

2.
This paper reports synthesis, crystal structure and electrical properties of Cu-doped CdO (CdO:Cu) powders. X-ray diffraction shows that majority of the samples are monophase and has the cubic structure. The limit solubility of Cu ions in CdO lattice is found to be 2 mol% (after heating at 900 °C), whereby the impurity phase was determined to be the monoclinic-CuO. For monophase CdO:Cu samples synthesized at 900 °C, the lattice parameter decreased with increasing Cu concentration. Electrical conductivity of undoped CdO and 2 mol% Cu-doped CdO (after heating at 900 °C) were found to be 79 and 191 Ω?1 cm?1, respectively, at 100 °C and 912 and 1549 Ω?1 cm?1, respectively, at 900 °C. Thus, it appears that electrical conductivity slightly increases with Cu doping. Finally, the activation energy of monophase CdO:Cu (after heating at 900 °C) is shown to decrease with Cu concentration.  相似文献   

3.
Transparent and conducting cadmium oxide (CdO) and manganese doped CdO (Mn: CdO) thin films were deposited using a low cost spray pyrolysis method on the glass substrate at 300 °C. For Mn doping, various concentrations of manganese acetate (1–3 wt%) was used in the spraying precursor solution. The structural, electrical and optical properties of CdO and Mn: CdO films were investigated using X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), UV–vis and Hall measurement. X-ray diffraction study reveals that the CdO and Mn: CdO films are possessing cubic crystal structures. SEM and AFM studies reveal that the grain size and roughness of the films are increased with increasing Mn doping concentration. Optical transmittance spectra of the CdO film decreases with increasing doping concentration of manganese. The optical band gap of the films decreases from 2.42 eV to 2.08 eV with increasing concentration of manganese. A minimum resistivity of 1.11×10−3 Ω cm and maximum mobility of 20.77 cm2 V−1 s−1 is achieved for 1 wt% of manganese doping.  相似文献   

4.
Nanocrystalline CdO thin films were prepared onto a glass substrate at substrate temperature of 300 °C by a spray pyrolysis technique. Grown films were annealed at 250, 350, 450 and 550 °C for 2.5 h and studied by the X-ray diffraction, Hall voltage measurement, UV-spectroscopy, and scanning electron microscope. The X-ray diffraction study confirms the cubic structure of as-deposited and annealed films. The grain size increases whereas the dislocation density decreases with increasing annealing temperature. The Hall measurement confirms that CdO is an n-type semiconductor. The carrier density and mobility increase with increasing annealing temperature up to 450 °C. The temperature dependent dc resistivity of as-deposited film shows metallic behavior from room temperature to 370 K after which it is semiconducting in nature. The metallic behavior completely washed out by annealing the samples at different temperatures. Optical transmittance and band gap energy of the films are found to decrease with increasing annealing temperature and the highest transmittance is found in near infrared region. The refractive index and optical conductivity of the CdO thin films enhanced by annealing. Scanning electron microscopy confirms formation of nano-structured CdO thin films with clear grain boundary.  相似文献   

5.
In this work, the B-doped Si rich oxide (SRO) thin films were deposited and then annealed using rapid thermal annealing (RTA) to form SiO2-matrix silicon nanocrystals (Si NCs). The effects of the RTA temperatures on the structural properties, conduction mechanisms and electrical properties of B-doped SRO thin films (BSF) were investigated systematically using Hall measurements, Fourier transform infrared spectroscopy and Raman spectroscopy. Results showed that the crystalline fraction of annealed BSF increased from 41.3% to 62.8%, the conductivity was increased from 4.48×10−3 S/cm to 0.16 s/cm, the carrier concentration was increased from 8.74×1017 cm−3 to 4.9×1018 cm−3 and the carrier mobility was increased from 0.032 cm2 V−1 s−1 to 0.2 cm2 V−1 s−1 when the RTA temperatures increased from 1050 °C to 1150 °C. In addition, the fluctuation induced tunneling (FIT) theory was applicable to the conduction mechanisms of SiO2-matrix boron-doped Si-NC thin films.  相似文献   

6.
Phosphorus (P)-doped silicon nanocrystals (Si-NCs) embedded in SiC matrix were prepared using magnetron sputtering and rapid thermal annealing with heavily P-doped Czochralski silicon as the doping target. The microstructure and electrical properties of the Si-NC thin films were characterized using transmission electron microscope, Raman spectroscopy and Hall measurement. It was observed that the microstructure changed from geometrically isolated Si-NCs to network Si-NCs with the annealing temperatures from 800 to 1200 °C. The evolution of microstructure led to the significant change of conductivity (10?6 - 101 S cm?1) in the Si0.85C0.15 thin films that possessing a fixed phosphorus concentration. A percolation threshold of crystalline-silicon (c-Si) content (30–40%) was found for the considerable increase of conductivity, where the carrier concentration dominated it. It suggested that the network Si-NCs not only increased the carrier mobility, but also boosted the carrier concentration. In addition, for the Si0.85C0.15 thin film with c-Si content above percolation threshold, the activate energy of conductivity could be lower than 70 meV and the work function lower than 4.10 eV.  相似文献   

7.
We report a method to produce magnetic nanostructured semiconductor films based in ZnO doped with Nickel to control their magnetic properties. The method is based on a combined diffusion–oxidation process within a controlled atmosphere chamber to produce a uniform distribution of Ni ions in the ZnO films (ZnO:Ni). The synthesis of ZnO:Ni films is reported as well as the magnetoresistive characteristics, the used method yields films with reproducible and homogeneous properties. The films were also characterized structurally by X-Ray Diffraction (XRD) and Raman spectroscopy, and by Hall–van der Pauw measurements. The XRD measurements confirm the nanocrystalline films character. The films resulted of n-type conductivity with electron concentrations of ~1020 cm−3 in average and carrier mobilities of 5 cm2/V s. The Magnetoresistance (MR) behavior of the films at 300 K shows negative changes of ΔR~0.5% in accordance with the usual literature reports on samples produced by other methods.  相似文献   

8.
In the paper, SnOx thin films were deposited by reactive magnetron sputtering from a tin target in O2 containing working gas. The evolution from Sn-containing SnO to tetravalent SnO2 films was investigated. The films could be classified into three groups according to their optical band gaps, which are Eg<2.5 eV, Eg=3.0–3.3 eV and Eg>3.7 eV. The electric measurements show that high conductivity can be obtained much easier in SnO2 than in SnO films. A high electron mobility of 15.7 cm2 V−1 s−1, a carrier concentration of 1.43×1020 cm−3 and a resistivity of 2.8×103 Ω cm have been achieved in amorphous SnO2 films. Films with the optical band gap of 3.0–3.3 eV remain amorphous though the substrate temperature is as high as 300 °C, which implies that °btaining high mobility in p-type SnO is more challenging in contrast to n-type SnO2 films.  相似文献   

9.
Transparent conductive ZnO films were directly deposited on unseeded polyethersulfone (PES) substrates with a spin-spray method using aqueous solution at a low substrate temperature of 85 °C. All ZnO films were crystalline with wurtzite hexagonal structure and impurity phases were not detected. ZnO films deposited without citrate ions in the reaction solution had a rod array structure. In contrast, ZnO films deposited with citrate ions in the reaction solution had a continuous, dense structure. The transmittance of the ZnO films was improved from 11.9% to 85.3% as their structure changed from rod-like to continuous. After UV irradiation, the ZnO films with a continuous, dense structure had a low resistivity of 9.1×10−3 Ω cm, high carrier concentration of 2.7×1020 cm−3 and mobility of 2.5 cm2 V−1 s−1.  相似文献   

10.
Polycrystalline Cadmium Telluride (CdTe) thin films were prepared on glass substrates by thermal evaporation at the chamber ambient temperature and then annealed for an hour in vacuum ~1×10−5 mbar at 400 °C. These annealed thin films were doped with copper (Cu) via ion exchange by immersing these films in Cu (NO3)2 solution (1 g/1000 ml) for 20 min. Further these films were again annealed at different temperatures for better diffusion of dopant species. The physical properties of an as doped sample and samples annealed at different temperatures after doping were determined by using energy dispersive x-ray analysis (EDX), x-ray diffraction (XRD), Raman spectroscopy, transmission spectra analysis, photoconductivity response and hot probe for conductivity type. The optical band gap of these thermally evaporated Cu doped CdTe thin films was determined from the transmission spectra and was found to be in the range 1.42–1.75 eV. The direct energy band gap was found annealing temperatures dependent. The absorption coefficient was >104 cm−1 for incident photons having energy greater than the band gap energy. Optical density was observed also dependent on postdoping annealing temperature. All samples were found having p-type conductivity. These films are strong potential candidates for photovoltaic applications like solar cells.  相似文献   

11.
We report on fabrication of CuxFe1−xS2 (CFS) thin films using chemical spray pyrolysis followed by post-sulfurization. Post-sulfurized CFS films were grown with compact and good crystalline texture. The sulfur stoichiometry in CFS films was found to be crucial for determination of its crystal structure. The sulfur deficient CFS films were driven to chalcopyrite CFS (CH-CFS) structure whereas the sulfur cured CFS films were grown with Cu-incorporated pyrite CFS (P-CFS) structure which was confirmed by X-ray diffraction and Raman spectroscopy analysis along with UV–vis spectroscopy measurement. Electrical characterizations of both types of CFS films revealed p-type conductivity with carrier concentration in the range of 1018–1020 cm−3 and mobility of 0.5–9 cm2 V−1 s−1. The band gaps of CFS films of CH-CFS structure (0.885–0.949 eV) were found to be less than that of P-CFS structure (0.966–1.156 eV), which indicates its potential application for thermoelectric and photovoltaic devices.  相似文献   

12.
Solar cells consist of n-Si wafer and p-Si polycrystalline thin film, which was solely fabricated by magnetron sputtering, and aluminium induced crystallization, are presented in this paper. Firstly, the material and electrical properties of the fabricated p-Si thin films including the crystallization ratio, grain size, morphology, carrier density and mobility were studied by Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy and Hall Effect measurement, respectively. The p-Si polycrystalline thin film formed under optimal process conditions had the crystallization ratio of ~ 99% and the grain size of ~ 64.6 nm, determined from the data of Raman spectroscopy and XRD. The hole concentration in the fabricated p-Si polycrystalline thin films was mainly in the order of 1017 cm−3 to 1019 cm−3, and their corresponding mobility values ranged from 15 cm2/V s to 65 cm2/V s. Then solar cells with the device structure of Al electrode/n-Si wafer/p-Si thin film/Al electrode were fabricated, and their electrical properties were measured both under dark and illumination conditions by the semiconductor performance tester and solar simulator. The measured J-V curves under dark condition confirmed the creation of a p-n junction with the ideality factor of 1.55, rectification ratio of 410 at ± 1 V, and the reverse saturation current of 246 nA/cm2. The efficiency of 2.19%, with an open circuit voltage of 448 mV and a short circuit current density of 11.2 mA/cm2, was achieved under AM1.5G standard illuminations.  相似文献   

13.
Cadmium stannate (Cd2SnO4) thin films were coated on Corning 1737 glass substrates at 540 °C by spray pyrolysis technique, from the aqueous solution of cadmium acetate and tin (II) chloride precursors. Fluorine doped Cd2SnO4 (F: Cd2SnO4) thin films were prepared by adding ammonium fluoride in the range of 0–5 wt% of the total weight of cadmium acetate and tin (II) chloride in the spray solution. Thickness of the prepared films is about 300 nm. X-ray diffraction analysis of the Cd2SnO4 and 3 wt% F: Cd2SnO4 films shows the signature for the growth along (222) direction. Scanning electron micrographs showed that fluorine doping effectively modifies the surface morphology of Cd2SnO4 films. Average optical transmittance in the visible region (500–850 nm) for Cd2SnO4 is ~79% and it is increased to ~83% for 1 wt% doping concentration of the NH4F in the solution. Fluorescence spectra of F: Cd2SnO4 (1 wt% and 3 wt%) exhibit peak at 601 nm. F: Cd2SnO4 film (1 wt%) shows mobility of ~42 cm2/V s, carrier concentration of ~9.5×1019 cm?3 and resistivity of ~1.5×10?3 Ω cm.  相似文献   

14.
CdTe thin films were brush plated on substrates maintained at temperatures in the range 30–90 °C from the precursors. The films exhibited cubic structure. Optical band gap of 1.45 eV was obtained. XPS measurements indicated the formation of CdTe. AFM studies indicated the formation of fine grains of the order of 50 nm, for the films deposited on room temperature substrates. Hot probe measurements indicated films to be n-type. A mobility in the range of 5–60 cm2 V−1 s−1 and a carrier density of 1015 cm−3 was obtained.  相似文献   

15.
We report a solution processed, p-doped film consisting of the organic materials 4,4′,4″-tris(3-methylphenylphenylamino)triphenylamine (MTDATA) as the electron donor and 2-(3-(adamantan-1-yl)propyl)-3,5,6-trifluorotetracyanoquinodimethane (F3TCNQ-Adl) as the electron acceptor. UV–vis–NIR absorption spectra identified the presence of a charge transfer complex between the donor and acceptor in the doped films. Field-effect transistors were used to characterize charge transport properties of the films, yielding mobility values. Upon doping, mobility increased and then slightly decreased while carrier concentration increased by two orders of magnitude, which in tandem leads to conductivity increasing from 4 × 10?10 S/cm when undoped to 2 × 10?7 S/cm at 30 mol% F3TCNQ-Adl. The hole density was calculated based on mobility values extracted from OFET data and conductivity values extracted from bulk IV data for the MTDATA: x mol% F3TCNQ-Sdl films. These films were then shown to function as the hole injection/hole transport layer in a phosphorescent blue OLED.  相似文献   

16.
《Organic Electronics》2008,9(3):317-322
With the aim of enhancing the field-effect mobility of poly(3-hexylthiophene) (P3HT) field-effect transistors (FETs), we added functionalized multiwalled carbon nanotubes (CNTs) to the P3HT solution prior to film formation. The nanotubes were found to be homogeneously dispersed in the P3HT films because of their functional groups. We found that at the appropriate CNT concentration (up to 10 wt% CNT), the P3HT FETs have a high field-effect mobility of 0.04 cm2 V−1 s−1, which is an improvement by a factor of more than 10. This remarkable increase in the field-effect mobility over that of the pristine P3HT film is due to the high conductivity of the CNTs which act as conducting bridges between the crystalline regions of the P3HT film, and the reduction in the hole-injection barrier due to the low work function of CNTs, which results in more efficient carrier injection.  相似文献   

17.
In the present work we have studied the effect of Na on the properties of graded Cu(In1−xGax)Se2 (CIGS) layer. Graded CIGS structures were prepared by chemical spray pyrolysis at a substrate temperature of 350 °C on soda lime glass. Sodium chloride is used as a dopant along with metal (Cu/In/Ga) chlorides and n, n-dimethyl selenourea precursors. The addition of Na exhibited better crystallinity with chalcopyrite phase and an improvement in preferential orientation along the (112) plane. Energy dispersive analysis of X-rays (line/point mapping) revealed a graded nature of the film and percentage incorporation of Na (0.86 at%). Raman studies showed that the film without sodium doping consists of mixed phase of chalcopyrite and CuAu ordering. Influence of sodium showed a remarkable decrease in electrical resistivity (0.49–0.087 Ω cm) as well as an increase in carrier concentration (3.0×1018–2.5×1019 cm−3) compared to the un-doped films. As carrier concentration increased after sodium doping, the band gap shifted from 1.32 eV to 1.20 eV. Activation energies for un-doped and Na doped films from modified Arrhenius plot were calculated to be 0.49 eV and 0.20 eV, respectively. Extremely short carrier lifetimes in the CIGS thin films were measured by a novel, non-destructive, noncontact method (transmission modulated photoconductive decay). Minority carrier lifetimes of graded CIGS layers without and with external Na doping are found to be 3.0 and 5.6 ns, respectively.  相似文献   

18.
CuCr0.93Mg0.07O2 thin films were successfully deposited by DC reactive magnetron sputtering at 1123 K from metallic targets. The influence of film thickness on the structural and optoelectronic properties of the films was investigated. X-ray diffraction (XRD) results revealed that all the films had a delafossite structure with no other phases. The optical and electrical properties were investigated by UV–VIS spectrophotometer and Hall measurement, respectively. It was found that the optoelectronic properties exhibited a thickness-dependent behavior. The optical band gap and the average transmittance of the films showed a monotonous decrease with respect to the increase in thickness. The average transmittance in the visible region decreased from 67% to 47% as the thickness increased from ~70 nm to ~280 nm. Simultaneously, the conductivity of the films fell from 1.40 S∙cm−1 to 0.27 S∙cm−1. According to Haacke's figure of merit (FOM), a film with a maximum FOM value of about 1.72×10−7 Ω−1 can be achieved when the thickness is about 70 nm (σ≈ 1.40 S·cm−1 and Tav. ≈67%).  相似文献   

19.
Preparation of transparent conducting cadmium oxide doped with various concentration of Zinc (3%, 6%, 10%) in the spray solution, on glass substrate by spray pyrolysis is reported. we have tried to improve some physical properties of CdO films by Zn doping, hence the electrical, optical and structural properties of Zn doped CdO films were investigated using X-ray diffraction, Scanning electron microscopy, Hall Effect and UV–Visible spectrophotometry. Optical band gap, refractive index and extinction coefficient are also determined for different concentration. results show 6% doping is appropriate between other doping concentration, thereupon we selected this value and increased substrate temperature to acquire optimal condition. Observations like as mobility increment up to 46.9 (cm2/V s), transmittance up to 82% and increase of band gap up to 2.62 (eV) state the sample with 400 °C substrate temperature is good candidate for transparent and conducting oxide application.  相似文献   

20.
Multiwalled carbon nanotubes (MWNTs) were solubilized in water by wrapping them noncovalently with poly(4-styrene sulfonate) (PSS). The PSS-wrapped MWNTs exhibited a high conductivity (2.0 × 102 S/cm) when compared to other solution-processed electrodes. Ultraviolet photoelectron spectroscopy results show the PSS-wrapped nanotubes have a work function of 4.83 eV, which is 0.36 eV higher than that of untreated MWNTs. We fabricated triisopropylsilylethynyl pentacene field-effect transistors (FETs) using the PSS-wrapped MWNTs as source/drain electrodes and found that the field-effect mobility of the thus obtained devices was 0.043 cm2 V?1 s?2. This mobility is four times higher than that of similar FETs containing gold electrodes (0.011 cm2 V?1 s?2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号