首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ab-initio calculations for the structural, electronic, optical, elastic and thermal properties of Ag-chalcopyrites (AgAlX2: X=S and Se) have been reported using the full potential linearized augmented plane wave (FP-LAPW) method. In this paper, the recently developed Tran–Blaha modified Becke–Johnson potential is used along with the Wu-Cohen generalized gradient approximation (WC-GGA) for the exchange-correlation potential. Results are presented for lattice constants, bulk modulus and its pressure derivative, band structures, dielectric constants and refractive indices. We have also computed the six elastic constants (C11, C12, C13, C33, C44, C66). The thermodynamical properties such as thermal expansion, heat capacity, Debye temperature, entropy, bulk modulus are calculated employing the quasi-harmonic Debye model at different temperatures (0–900 K) and pressures (0–8 GPa) and the silent results are interpreted. Hardness of the materials is calculated for the first time at different temperatures and pressures.  相似文献   

2.
3.
The structural, electronic, elastic and magnetic properties of gadolinium and its hydrides GdHx (x=1, 2, 3) are investigated by using Vienna ab-initio simulation package with the generalized gradient approximation parameterized by Perdew, Burke and Ernzerhof (GGA-PBE) plus a Hubbard parameter (GGA-PBE+U) in order to include the strong Coulomb correlation between localized Gd 4f electrons. At ambient pressure all the hydrides are stable in the ferromagnetic state. The calculated lattice parameters are in good agreement with the experimental results. The bulk modulus is found to decrease with the increase in the hydrogen content for the gadolinium hydrides. A pressure-induced structural phase transition is predicted to occur from cubic to hexagonal phase in GdH and GdH2 and from hexagonal to cubic phase in GdH3. The electronic structure reveals that mono and di-hydrides are metallic, whereas trihydride is half-metallic at normal pressure. On further increasing the pressure, a half-metallic to metallic transition is also observed in GdH3. The calculated magnetic moment values of GdHx (x=1, 2, 3) are in accord with the experimental values.  相似文献   

4.
The structural, elastic, and thermodynamic properties of ZnGeP2 with chalcopyrite structure are investigated using the pseudo-potentials plane wave method based on the density functional theory with the generalized gradient approximation. The lattice parameters (a, c and u) are directly calculated and agree well with previous experimental and theoretical results. The obtained negative formation enthalpy shows that ZnGeP2 crystal has strong structural stability. We have also calculated the bulk modulus B and the elastic parameters (C11, C12, C13, C33, C44, and C66) which have not been measured yet. The accuracy and reliability of the calculated elastic constants of ZnGeP2 crystal are discussed. In addition, the pressure and temperature dependencies of the lattice parameters, bulk modulus, Debye temperature, Grüneisen parameter, entropy, volume thermal expansion coefficient, and specific heat capacity are obtained in the ranges of 0–20 GPa and 0–1200 K using the quasi-harmonic Debye model. To our knowledge this is the first quantitative theoretical prediction of the thermodynamic properties for ZnGeP2 compound and still awaits experimental confirmations.  相似文献   

5.
6.
We present a theoretical study of structural, elastic, thermodynamic, and electronic properties of the uranium filled skutterudite UFe4P12. We use the full-potential linear muffin–tin orbital (FP-LMTO) method in which the local density approximation (LDA) is used for the exchange-correlation (XC) potential. The lattice parameter at equilibrium, the bulk modulus, its pressure derivative, the elastic constants and the band structure energy of the filled skutterudite UFe4P12 are calculated and systematically compared to available theoretical and experimental data. Herein, we use the total energy variation as function of strain technique to determine independent elastic constants and their pressure dependence. Furthermore, using quasi-harmonic Debye model with phonon effects, the effect of pressure P and temperature T on the lattice parameter, bulk modulus, thermal expansion coefficient, Debye temperature and the heat capacity of UFe4P12 are investigated for the first time. Band structure of UFe4P12 indicates a tendency of forming a pseudo-gap that appears above the Fermi level at Γ point. This is a unique characteristic of skutterudite, especially when a single phosphorous p-band crosses the Fermi level. The crossing band is, indeed, pushed down by the repulsion of U f-resonance states.  相似文献   

7.
Full potential linearized augmented plane wave method within the framework of density functional theory was applied to calculate the structural, elastic, electronic, thermoelectric and optical properties of Mg2X (X=Si, Ge, Sn, Pb) compounds. Exchange-correlation effects were treated using generalized gradient approximation and modified Becke–Johnson technique. Calculated structural parameters were found in good agreement to the experimental data. With the pressure application, the lattice constant decreased while the bulk modulus increased. Brittleness and ductility of these compounds were interpreted via the calculated elastic constants. The optical properties like complex dielectric function, refractive index, reflectivity, and optical conductivity were investigated in the pressure range 0–10 GPa. Very high reflectivity in a wide energy range indicates the usefulness of these materials as a shield from high energy radiations. In addition, the thermopower of the materials was calculated as a function of the chemical potential at various temperatures. These materials are suitable for applications in optoelectronic and thermoelectric devices due to their high thermopower and narrow bandgap.  相似文献   

8.
A detailed theoretical study of the electronic structure, optical, elastic and thermodynamics properties of jadeite have been performed by means of the first principles based on the state-of-the-art of density functional theory within the generalized gradient approximation. The optimized lattice constants and the atomic positions are in good agreement with experimental data. The total density of states and partial density of states of jadeite have been discussed. The energy gap has been calculated along the Γ direction found to be 5.338 eV, which shows that jadeite has wide direct band gap. The optical properties, such as the dielectric function, refractive index, extinction coefficient, reflectivity coefficient, loss function and absorption coefficient for [100] and [001] directions have been described for the first time in the energy range 0–40 eV. The elastic constants, bulk modulus, Young׳s modulus, anisotropic factor and Poisson׳s ratio have been calculated. Furthermore, the Vickers hardness and Debye temperature of jadeite have been predicted. The calculated values of all above parameters are compared with the available experimental values.  相似文献   

9.
In this work, we study the structural, electronic and optical properties of AgSbS2, using full-potential linearized augmented plane wave and the pseudopotential plane wave scheme in the frame of generalized gradient approximation. Features such as the lattice constant, bulk modulus and its pressure derivative are reported. Our results suggest a phase transition from AF-IIb phase to rocksalt (B1) phase under high pressure. The calculated band structure and density of states show that the material under load has an indirect energy band gap X→() for AF-IIb phase (semiconductor) and a negative band gap W(ГX) for B1 phase (semimetal). The optical properties are analyzed and the origin of some peaks in the spectra is discussed. Besides, the dielectric function, refractive index and extinction coefficient for radiation up to 14 eV have also been reported and discussed.  相似文献   

10.
The structural and electronic properties of Cu based Delafossite TCOs (Transparent Conducting Oxides) CuXO2 (X=B, Al, Ga, In, Sc, Y, La) were investigated using a first principles technique of a Full Potential Linearized Augmented Plane wave method. For this study the Perdew, Burke and Ernzerhof gernalized gradient approximation (PBE-GGA), Tran-Blaha modified Beck-Johnson potential (TB-mBJ) and Engel and Vosko generalized gradient approximation (EV-GGA) were used. The computed ground state lattice parameters are in good agreement with published experimental and theoretical data. To the best of acknowledge, the TB-mBJ and EV-GGA are used for the first time for CuBO2 and CuXO2 (X=Sc, Y, La), respectively. The latter approximations provide better band gap values for these compounds compared to previous published data. The density of states plots shows that the valence band maximum for all the studied compounds is mainly formed from a combination of Cu-3d and O-2p states. The broadening of the atom in molecule motivates us to analyze the topology of the electron density with an sophisticated method.  相似文献   

11.
The structural stability, mechanical, electronic and thermodynamic properties of the cubic sodium based fluoro-perovskite NaXF3 (X=Mg, Zn) have been studied using density functional theory (DFT). The generalized gradient approximation of Perdew–Burke and Ernzerhof (GGA-PBE) is used for modeling exchange-correlation effects. In addition, the alternative form of the GGA proposed by Engel and Vosko (GGA-EV) is also used to improve the electronic band structure calculations. The results show that both compounds are stable in the cubic Pm3m structure. From Poisson׳s ratio, it is inferred that cubic anti-perovskite NaXF3 are ductile in nature and that bonding is predominantly of ionic in nature. The electronic band structure calculations and bonding properties show that anti-perovskites have an indirect energy band gap (M–Г) with a dominated ionic character. The thermal effects on thermal expansion coefficient, Debye temperature and Grüneisen parameter were predicted using the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The calculations are found to be in good agreement with other results.  相似文献   

12.
13.
The electronic and optical properties of SnSb4S7 compound are calculated by the full-potential linearized augmented plane-wave (FP-LAPW) method. The density of states (DOS) is carried out by the modified Becke-Johnson (mBJ) exchange potential approximation based on density functional theory (DFT). The compound SnSb4S7 has a monoclinic structure with the space group P21/m with lattice parameters of a=11.331 Å, b=3.865 Å and c=13.940 Å. The band gap is calculated to be 0.8 eV. The optical parameters, like dielectric constant, refractive index, reflectivity and energy loss function were also calculated and analyzed. The present work provides information about variation of the electronic and optical properties which reveals that SnSb4S7 is suitable for optoelectronic devices.  相似文献   

14.
Ilmenite-type ATiO3 (A=Fe, Co, Ni) crystals have been investigated via Generalized Gradient Approximation (GGA) in the scheme of Revised Perdew-Burke-Ernzerhof (RPBE) using the first-principles method. The band structures, densities of states, bond orders and charge populations, optical properties including the dielectric function ε(ω), absorption coefficient I(ω), refractive index n(ω), extinction coefficient k(ω), electron energy loss function L(ω) and reflectivity function R(ω), are calculated. The results show that the GGA-optimized geometries agree well with the experimental data. FeTiO3 has a direct band gap, but both CoTiO3 and NiTiO3 exhibit indirect band gap. The analysis for densities of states and atomic charge populations exhibits that TiO bonds possess the stronger covalent bonding strength than AO bonds. The calculated optical properties along [100], [010] and [001] as well as polycrystalline directions demonstrate the significant optical anisotropy parallel and perpendicular to c-axis for ATiO3. Finally, the origins of main peaks for optical spectra are presented based on electron transitions. Theoretical insights into the microscopic intrinsic properties of ATiO3 should provide fundamental investigations for further understanding the Ilmenite ATiO3 materials and improving their practical applications.  相似文献   

15.
The structural, elastic and thermodynamic properties of the SiB2O4 (B=Mg, Zn and Cd) cubic spinels have been investigated through ab initio full-potential linearized augmented plane wave calculations. The calculated structural parameters are in good agreement with the available experimental and theoretical data. The single crystal elastic constants are numerically estimated using total energy-strain approach with two different sets of distortions. The polycrystalline aggregate elastic parameters are calculated from the single crystal elastic constants via the Voigt–Reuss–Hill approximations. Mechanical stability, sound velocities, ductility/brittleness, elastic anisotropy, Debye temperature and pressure dependence of the elastic constants of the title compounds are also assessed. The temperature dependence of the lattice parameter, bulk modulus, volume thermal expansion coefficient, isochoric and isobaric heat capacity and Debye temperature in a wide temperature interval at some different fixed pressures is predicted through the quasi-harmonic Debye model.  相似文献   

16.
The structural stability of rare earth nitrides REN (RE=Ce,Pr,Nd) is investigated among three cubic structures, namely, NaCl (B1), CsCl(B2) and zinc blende (B3). It is found that NaCl structure is the most stable structure for all the three nitrides. On increasing the pressure, structural phase transition from NaCl (B1) to CsCl (B2) phase is predicted in CeN and NdN at the pressures of 88 GPa and 36.5 GPa while NaCl (B1) to zinc blende (B3) phase transition is observed in PrN at the pressure of 68 GPa. At normal pressure, all the three nitrides are stable in the ferromagnetic state (FM) with cubic NaCl (B1) structure. The calculated lattice parameters and bulk modulus values are in good agreement with experimental and other theoretical values. Electronic structure reveals that PrN and NdN are half metallic while CeN is metallic at normal pressure. Ferromagnetism is quenched in CeN and PrN at the pressures of 152 GPa and 121 GPa respectively. The positive values of elastic constants indicate that all the three nitrides are mechanically stable in NaCl Phase. It is found that all these nitrides are ductile and anisotropic in nature.  相似文献   

17.
Structural, elastic, electronic and thermodynamic properties of the ternary cubic filled skutterudite CeOs4Sb12 compound were calculated using the full-potential linear muffin-tin orbital implementation of density functional theory. The exchange-correlation potential was treated with the local density approximation. The calculated ground state quantities such as the lattice parameter, atomic position parameters of Sb atoms, bulk modulus and its pressure derivative are compared to the available experimental data. We have computed the elastic moduli and their pressure dependence, which have not been calculated or measured yet. The Debye temperature is estimated from the average sound velocity. From the elastic parameter behavior, it is inferred that this compound is elastically stable and brittle in nature. The electronic band structure calculations revealed metallic behavior for the herein studied compound at zero pressure, but under pressure effect, the metallic character disappears and the compound becomes a narrow indirect band gap semiconductor. Through the quasi-harmonic Debye model, in which phononic effects are considered, the effect of pressure P and temperature T on the lattice constant, bulk modulus, heat capacity, thermal expansion coefficient and Debye temperature are investigated.  相似文献   

18.
In this study, the structural, magnetic, electronic, elastic and thermal properties of the ternary intermetallic, RMn2Si2 (R=Ce and Nd), compounds are presented. The study is carried out by employing the full-potential (FP) linearized augmented plane wave (LAPW) plus local orbital (lo) approach based on the density functional theory (DFT). To depict the exchange-correlation energy (an important component of total energy calculations), the local-density approximation and the local spin density approximation (LDA/LSDA) are used. Our calculated results for equilibrium lattice parameters are in good agreement with the available experimental measurements. The total energy calculations reveal the strong dependence to the distance between atomic species in these compounds. The analysis of the partial and total densities of states (DOS) of both compounds (CeMn2Si2 and NdMn2Si2) demonstrates their metallic and magnetic character as well. Whereas the calculated values of Poisson׳s ratio and B/G present their brittle makeup. At the end, using a quasi-harmonic Debye model as implemented in GIBBS code, the thermal properties were calculated.  相似文献   

19.
20.
Using the first-principles plane-wave pseudo-potential method based on density function theory (DFT), the electronic structure and optical properties of Ga0.5Al0.5As (001), (011) and (111) surfaces are calculated. Result shows that (001) surface is reconstructed, (011) surface is not reconstructed but wrinkled, (111) surface is only relaxed. (111) is the most stable surface. (001) surface owns the lowest work function. Absorption coefficient and reflectivity of these surfaces are smaller than bulk, the transmittance of the surfaces are larger than the bulk, which is helpful for the incident light to excite photoelectrons. The decrease of the absorption coefficient and reflectivity at (001) surface are the largest. Calculation of electronic structure and optical properties predict that the (001) surface should have the strongest photoemission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号