首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tin oxide (SnO2) thin films were deposited on glass substrates by thermal evaporation at different substrate temperatures. Increasing substrate temperature (Ts) from 250 to 450 °C reduced resistivity of SnO2 thin films from 18×10−4 to 4×10−4 Ω ▒cm. Further increase of temperature up to 550 °C had no effect on the resistivity. For films prepared at 450 °C, high transparency (91.5%) over the visible wavelength region of spectrum was obtained. Refractive index and porosity of the layers were also calculated. A direct band gap at different substrate temperatures is in the range of 3.55−3.77 eV. X-ray diffraction (XRD) results suggested that all films were amorphous in structure at lower substrate temperatures, while crystalline SnO2 films were obtained at higher temperatures. Scanning electron microscopy images showed that the grain size and crystallinity of films depend on the substrate temperature. SnO2 films prepared at 550 °C have a very smooth surface with an RMS roughness of 0.38 nm.  相似文献   

2.
The electrical properties, memory switching behavior, and microstructures of ZrTiO4 thin films prepared by sol–gel method at different annealing temperatures were investigated. All films exhibited ZrTiO4 (111) and (101) orientations perpendicular to the substrate surface, and the grain size increased with increasing annealing temperature. A low leakage current density of 1.47×10?6 A/cm2 was obtained for the prepared films. The IV characteristics of ZrTiO4 capacitors can be explained in terms of ohmic conduction in the low electric field region and Schottky emission in the high electric field region. An on/off ratio of 102 was measured in our glass/ITO/ZrTiO4/Pt structure with an annealing temperature of 600 °C. Considering the primary memory switching behavior of ZrTiO4, ReRAM based on ZrTiO4 shows promise for future nonvolatile memory applications.  相似文献   

3.
An inverted organic bulk-heterojunction solar cell containing a zinc oxide (ZnO) based electron collection layer with a structure of ITO/ZnO/[6,6]-phenyl C61 butyric acid methyl ester (PCBM): regioregular poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxylenethiophene): poly(4-styrene sulfonic acid)/Au (ZnO cell) was fabricated. We examined the relationship between the heating temperature of the ZnO layer and the device performance under irradiation by simulated sunlight while cutting the UV light. The effects of the UV light contained in simulated sunlight were investigated by photocurrent–voltage (IV) and alternating current impedance spectroscopy (IS) measurements. When the ZnO cells were irradiated with simulated sunlight, they exhibited a maximum power conversion efficiency (PCE) of over 3%, which hardly varied with the heating temperature of ZnO layers treated at 250 °C, 350 °C, and 450 °C. In contrast, when the ZnO cells were irradiated with simulated sunlight without UV content, their photovoltaic characteristics were very different. In the case of the cell with ZnO prepared by heating at 250 °C, PCE of 2.7% was maintained even under continuous irradiation with simulated sunlight without UV. However, for the cells with ZnO prepared by heating at 350 °C and 450 °C, the shapes of the IV curves changed with the UV-cut light irradiation time, accompanying an increase in their series resistance. Overall, after UV-cut light irradiation for 1 h, the PCE of the cell with ZnO prepared by heating at 350 °C decreased to 1.80%, while that of the cell with ZnO prepared by heating at 450 °C fell to 1.35%. The photo IS investigations suggested that this performance change was responsible for the formation of charge-trapping sites at the ZnO/PCBM:P3HT interface which act as recombination centers for photo-produced charges in the PCBM:P3HT layer.  相似文献   

4.
Thin films of nickel phthalocyanine (NiPc) were prepared by thermal evaporation and the effects of annealing temperature on the structural and optical properties of the samples were studied using different analytical methods. Structural analysis showed that the grain size and crystallinity of NiPc films improved as annealing temperature increased from 25 to 150 °C. Also, maximum grain size (71.3 nm) was obtained at 150 °C annealing temperature. In addition, NiPc films annealed at 150 °C had a very smooth surface with an RMS roughness of 0.41 nm. Optical analysis indicated that band gap energy of films at different annealing temperatures varied in the range of 3.22–3.28 eV. Schottky diode solar cells with a structure of ITO/PEDOT:PSS/NiPc/Al were fabricated. Measurement of the dark current density–voltage (JV) characteristics of diodes showed that the current density of films annealed at 150 °C for a given bias was greater than that of other films. Furthermore, the films revealed the highest rectification ratio (23.1) and lowest barrier height (0.84 eV) demonstrating, respectively, 23% and 11% increase compared with those of the deposited NiPc films. Meanwhile, photoconversion behavior of films annealed at 150 °C under illumination showed the highest short circuit current density (0.070 mA/cm2) and open circuit voltage of (0.55 V).  相似文献   

5.
This paper describes a simple method utilizing electrophoretic deposition (EPD) of commercial P25 nanoparticles (NPs) films on fluoride-doped tin oxide (FTO) substrate. In this process, voltage and the number of deposition cycles are well controlled to achieve TiO2 film thickness of around 1.5–26 μm, without any mechanical compression processing. The experimental results indicate that the TiO2 film thickness plays an important role as the photoelectrode in DSSCs because it adsorbs a large number of dye molecules which are responsible for electrons supply. Furthermore, it was found that effects of the bulk traps and surface states within the TiO2 films on the recombination of the photo-injected electrons (electron–hole pairs) strongly depend on the TiO2 electrode annealing temperature. Finally, a DSSC with a 24 μm thick TiO2 film and annealed at 500 °C produced the highest conversion efficiency (η=6.56%, ISC=16.4, VOC=0.72, FF=0.55) with an incident solar energy of 100 mW/cm2.  相似文献   

6.
Nanocrystalline vanadium pentoxide (V2O5) thin films have been deposited by a spray pyrolysis technique on preheated glass substrates. The substrate temperature was changed between 300 and 500 °C. The structural and morphological properties of the films were investigated by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM). The influence of different substrate temperatures on ethanol response of V2O5 has also been investigated. XRD revealed that the films deposited at Tpyr=300 °C have low peak intensities, but the degree of crystallinity improved when the temperature was increased to 500 °C and films had orthorhombic structures with preferential orientations along the (0 0 1) direction. The fractal analysis showed a decreasing trend versus the pyrolysis temperature. Sensing properties of the samples were studied in the presence of ethanol vapor. The operating temperature of the sensor was optimized for the best gas response. The response increased linearly with different ethanol concentrations. It was found that films deposited at the lowest substrate temperature (300 °C) had the highest sensing response to ethanol.  相似文献   

7.
All RF sputtering-deposited Pt/SiO2/n-type indium gallium nitride (n-InGaN) metal–oxide–semiconductor (MOS) diodes were investigated before and after annealing at 400 °C. By scanning electron microscopy (SEM), the thickness of Pt, SiO2, n-InGaN layer was measured to be ~250, 70, and 800 nm, respectively. AFM results also show that the grains become a little bigger after annealing, the surface topography of the as-deposited film was smoother with the rms roughness of 1.67 nm and had the slight increase of 1.92 nm for annealed sample. Electrical properties of MOS diodes have been determined by using the current–voltage (IV) and capacitance–voltage (CV) measurements. The results showed that Schottky barrier height (SBH) increased slightly to 0.69 eV (IV) and 0.82 eV (CV) after annealing at 400 °C for 15 min in N2 ambient, compared to that of 0.67 eV (IV) and 0.79 eV (CV) for the as-deposited sample. There was the considerable improvement in the leakage current, dropped from 6.5×10−7 A for the as-deposited to 1.4×10−7 A for the 400 °C-annealed one. The annealed MOS Schottky diode had shown the higher SBH, lower leakage current, smaller ideality factor (n), and denser microstructure. In addition to the SBH, n, and series resistance (Rs) determined by Cheungs׳ and Norde methods, other parameters for MOS diodes tested at room temperature were also calculated by CV measurement.  相似文献   

8.
SnO2:F thin films were prepared by the spray pyrolysis (SP) technique at substrate temperature in the range 360–480 °C. The effect of varying the substrate temperature on the electrical and structural properties of the films was investigated by studying the I–V characteristics, the X-ray diffraction patterns (XRD), and the scanning electron microscope images (SEM). The I–V characteristics of the films were improved by increasing the substrate temperature, i.e. the resistivity of the films had decreased from 98 to 0.22 Ω cm. The X-ray diffraction patterns taken at 400 and 480 °C showed that the films are polycrystalline and two directions of crystal growth appeared in the difractogram of the film deposited at the lower substrate temperature, which correspond to the reflections from the (1 1 0) and (2 0 0) planes. With the increase in the substrate temperature a new direction of crystal growth appeared, which corresponds to the reflection from the (1 0 1) plane. Also the (1 1 0) and (2 0 0) lines were slightly grown at the higher substrate temperature, which means the crystal growth was enhanced and the grain size had increased. The SEM images confirmed these results and showed larger grains and more crystallization for the higher substrate temperature too.  相似文献   

9.
In the paper, SnOx thin films were deposited by reactive magnetron sputtering from a tin target in O2 containing working gas. The evolution from Sn-containing SnO to tetravalent SnO2 films was investigated. The films could be classified into three groups according to their optical band gaps, which are Eg<2.5 eV, Eg=3.0–3.3 eV and Eg>3.7 eV. The electric measurements show that high conductivity can be obtained much easier in SnO2 than in SnO films. A high electron mobility of 15.7 cm2 V−1 s−1, a carrier concentration of 1.43×1020 cm−3 and a resistivity of 2.8×103 Ω cm have been achieved in amorphous SnO2 films. Films with the optical band gap of 3.0–3.3 eV remain amorphous though the substrate temperature is as high as 300 °C, which implies that °btaining high mobility in p-type SnO is more challenging in contrast to n-type SnO2 films.  相似文献   

10.
Spin coated polyaniline:polyvinylidene-fluoride (PANI: PVDF) composites films were prepared by the optimized mass ratios of 5:95. The effect of drying temperature on the structure, morphology and electrical conductivity of PANI: PVDF films were studied, and their use as buffer layer for organic solar cells performance was explored. The PANI: PVDF film which dried at 90 °C exhibit higher β-phase content in PVDF (Fβ=94%). Furthermore, solar cells conversion efficiency (η=3.06%) is better when using ITO/PVDF:PANI (dried at 90 °C) as photo-anode than that containing only ITO (η=0.96%) and ITO/PEDOT:PSS (η=1.78%).  相似文献   

11.
Copper indium gallium diselenide (CIGS) films were deposited as an absorber layer on polyethylene terephthalate (PET) substrates by a screen printing technique using CIGS ink with a Ga content ranging from 0.3 to 0.6. The melting point of PET substrate is 254.9 °C; the average transmission in the visible (400 nm–800 nm) for PET substrates is greater than 85%. Effects of Ga content of the CIGS absorber layer on structural and electrical properties of the CIGS films were studied. The lattice parameters, a and c for all CIGS films were decreased with increasing Ga content. At room temperature, Hall mobility and charge-carrier concentration of the CIGS films varies from 97.2 to 2.69 cm2 V−1 s−1 and 9.98×1016 to 3.23×1018 cm−3, respectively.  相似文献   

12.
This article reports on the epitaxy of crystalline high κ oxide Gd2O3 layers on Si(1 1 1) for CMOS gate application. Epitaxial Gd2O3 thin films have been grown by Molecular Beam Epitaxy (MBE) on Si(1 1 1) substrates between 650 and 750 °C. The structural and electrical properties were investigated depending on the growth temperature. The CV measurements reveal that equivalent oxide thickness (EOT) equals 0.7 nm for the sample deposited at the optimal temperature of 700 °C with a relatively low leakage current of 3.6 × 10?2 A/cm2 at |Vg ? VFB| = 1 V.  相似文献   

13.
Single-crystalline nonpolar GaN epitaxial films have been successfully grown on r-plane sapphire (Al2O3) substrates by pulsed laser deposition (PLD) with an in-plane epitaxial relationship of GaN[1-100]//Al2O3[11-20]. The properties of the ~500 nm-thick nonpolar GaN epitaxial films grown at temperatures ranging from 450 to 880 °C are studied in detail. It is revealed that the surface morphology, the crystalline quality, and the interfacial property of as-grown ~500 nm-thick nonpolar GaN epitaxial films are firstly improved and then decreased with the growth temperature changing from 450 to 880 °C. It shows an optimized result at the growth temperature of 850 °C, and the ~500 nm-thick nonpolar GaN epitaxial films grown at 850 °C show very smooth surface with a root-mean-square surface roughness of 5.5 nm and the best crystalline quality with the full-width at half-maximum values of X-ray rocking curves for GaN(11-20) and GaN(10-11) of 0.8° and 0.9°, respectively. Additionally, there is a 1.7 nm-thick interfacial layer existing between GaN epitaxial films and r-plane sapphire substrates. This work offers an effective approach for achieving single-crystalline nonpolar GaN epitaxial films for the fabrication of nonpolar GaN-based devices.  相似文献   

14.
We fabricated TiO2 thin films the by sol–gel process. Successful IV curves can be obtained in the Cu/TiO2/ATO structure device in which TiO2 thin film was calcined at 300 °C. The bipolar resistive switching behavior was observed and the ratio of Roff/Ron can be increased to 104. The switching voltage changes from 4.8 to 3.5 V when the current compliance drops from 10 to 0.1 mA. We also investigated the microstructure by HRTEM technology.  相似文献   

15.
《Microelectronics Reliability》2014,54(12):2760-2765
A bottom-gate/top-drain/source contact ZnO nanoparticle thin-film transistor was fabricated using a low temperature annealing process (150 °C) suitable for flexible electronics. Additionally, a high-k resin filled with TiO2 nanoparticles was used as gate dielectric. After fabrication, the transistors presented almost no hysteresis in the IV curve, a threshold voltage (VT) of 2.2 V, a field-effect mobility on the order of 0.1 cm2/V s and an ION/IOFF ratio of about 104. However, the transistor is sensitive to aging effects due to interactions with the ambient air, resulting in current level reduction caused by trapped oxygen at the nanoparticle surface, and an anti-clockwise hysteresis in the transfer curve. It was demonstrated, conjointly, the possible desorption of oxygen by voltage stress and UV light exposure.  相似文献   

16.
CuIn11S17 compound was synthesized by horizontal Bridgman method using high-purity copper, indium and sulfur elements. CuIn11S17 thin films were prepared by high vacuum evaporation on glass substrates. The glass substrates were heated at 30, 100 and 200 °C. The structural properties of the powder and the films were investigated using X-ray diffraction (XRD). XRD analysis of thin films revealed that the sample deposited at a room temperature was amorphous in nature while those deposited on heated substrates were polycrystalline with a preferred orientation along the (311) plane of the spinel phase. Ultraviolet–visible (UV–vis) spectroscopy was used to study the optical properties of thin films. The results showed that CuIn11S17 thin films have high absorption coefficient α in the visible range (105–106 cm−1). The band gap Eg of the films decrease from 2.30 to 1.98 eV with increasing the substrate temperature (Ts) from 30 to 200 °C. We exploited the models of Swanepoel, Wemple–DiDomenico and Spitzer–Fan for the analysis of the dispersion of the refractive index n and the determination of the optical constants of the films. Hot probe method showed that CuIn11S17 films deposited at Ts=30 °C and Ts=100 °C are p-type conductivity whereas the sample deposited at Ts=200 °C is highly compensated.  相似文献   

17.
18.
Benzopyrazine-fused tetracene (TBPy) and its disulfide (TBPyS) bearing alkoxy groups (OCH3, OC8H17) were designed and synthesized to obtain π-expanded tetracene derivatives. These derivatives are featured with long-wavelength light absorption property (λonset: up to 820 nm), photooxidative stability (half-lives (τ1/2): 11 times longer than tetracene), and solubility for solution process. The methoxy compounds (TBPy-C1 and TBPyS-C1) were used for single-crystal X-ray crystallographic analysis and single-crystal organic field-effect transistor (OFET) devices showing relationship between packing structures and hole mobilities. The octyloxy compounds (TBPy-C8 and TBPyS-C8) were investigated on solution-processed thin-film formation and hole transport property in thin-film OFET devices. Crystalline mesophase of TBPy-C8 and TBPyS-C8 was characterized by differential scanning calorimetry analysis showing endothermic peaks at 98 and 198 °C on its second heating process and exothermic peaks at 177 and 76 °C on its second cooling process for TBPyS-C8, and played crucial roles in thin-films formation. Hole mobility of 1.7 × 10?2 cm2/V s (with Vth = ?30 V and ION/IOFF = 104) was obtained for the thin-film OFET device of TBPyS-C8.  相似文献   

19.
FeS2 thin films were grown on a glass substrate using a physical vapor deposition technique at room temperature. Subsequently, the thin films were annealed in two different atmospheres: vacuum and vacuum-sulfur. In the vacuum-sulfur atmosphere a graphite box was used as sulfur container and the films were sulfurated successfully at 200–350 ºC. It was found that annealing in a vacuum-sulfur atmosphere was indispensable in order to obtain polycrystalline FeS2 thin films. The polycrystalline nature and pure phase were determined by XRD and Raman techniques and the electrical properties by the Hall effect. Using the sulfurating technique, the n-type semiconductor was prepared at 200–350 °C and a p-type at 500 °C. The carrier concentrations were between 1.19×1020 and 2.1×1020 cm−3. The mobility was 9.96–5.25 cm2 V−1 s−1 and the resistivity was 6.31×10−2 to 1.089×10−2 Ω cm. The results obtained from EDS showed that the films prepared in the vacuum-sulfur atmosphere were close to stoichiometric and that the indirect band gap varied between 1.03 and 0.945 eV.  相似文献   

20.
YbBa2Cu3O7−δ (Yb-123) films are deposited for the first time using Pulsed Laser Deposition (PLD) method at three different substrate temperatures, viz. 675°C, 700°C and 725°C. Films are characterized using XRD, dc electrical resistivity, critical current density (Jc) and microstructural study by Atomic Force Microscopy (AFM) techniques. It is found that 700°C is the optimum growth temperature for growing high quality Yb-123 films. The best Tc and Jc values obtained at optimum growth conditions are 88 K and 2.6×106 A cm−2 at 77 K, respectively. AFM photographs provide evidence in confirming the relation between growth temperature and superconducting properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号