首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present parallel algorithms for computing all pair shortest paths in directed graphs. Our algorithm has time complexityO(f(n)/p+I(n)logn) on the PRAM usingp processors, whereI(n) is logn on the EREW PRAM, log logn on the CCRW PRAM,f(n) iso(n 3). On the randomized CRCW PRAM we are able to achieve time complexityO(n 3/p+logn) usingp processors. A preliminary version of this paper was presented at the 4th Annual ACM Symposium on Parallel Algorithms and Architectures, June 1992. Support by NSF Grant CCR 90-20690 and PSC CUNY Awards #661340 and #662478.  相似文献   

2.
Parallel algorithms for the problems of selection and searching on sorted matrices are formulated. The selection algorithm takesO(lognlog lognlog*n) time withO(n/lognlog*n) processors on an EREW PRAM. This algorithm can be generalized to solve the selection problem on a set of sorted matrices. The searching algorithm takesO(log logn) time withO(n/log logn) processors on a Common CRCW PRAM, which is optimal. We show that no algorithm using at mostnlogcnprocessors,c≥ 1, can solve the matrix search problem in time faster than Ω(log logn) and that Ω(logn) steps are needed to solve this problem on any model that does not allow concurrent writes.  相似文献   

3.
We give the first efficient parallel algorithms for solving the arrangement problem. We give a deterministic algorithm for the CREW PRAM which runs in nearly optimal bounds ofO (logn log* n) time andn 2/logn processors. We generalize this to obtain anO (logn log* n)-time algorithm usingn d /logn processors for solving the problem ind dimensions. We also give a randomized algorithm for the EREW PRAM that constructs an arrangement ofn lines on-line, in which each insertion is done in optimalO (logn) time usingn/logn processors. Our algorithms develop new parallel data structures and new methods for traversing an arrangement.This work was supported by the National Science Foundation, under Grants CCR-8657562 and CCR-8858799, NSF/DARPA under Grant CCR-8907960, and Digital Equipment Corporation. A preliminary version of this paper appeared at the Second Annual ACM Symposium on Parallel Algorithms and Architectures [3].  相似文献   

4.
This paper determines upper bounds on the expected time complexity for a variety of parallel algorithms for undirected and directed random graph problems. For connectivity, biconnectivity, transitive closure, minimum spanning trees, and all pairs minimum cost paths, we prove the expected time to beO(log logn) for the CRCW PRAM (this parallel RAM machine allows resolution of write conflicts) andO(logn · log logn) for the CREW PRAM (which allows simultaneous reads but not simultaneous writes). We also show that the problem of graph isomorphism has expected parallel timeO(log logn) for the CRCW PRAM andO(logn) for the CREW PRAM. Most of these results follow because of upper bounds on the mean depth of a graph, derived in this paper, for more general graphs than was known before.For undirected connectivity especially, we present a new probabilistic algorithm which runs on a randomized input and has an expected running time ofO(log logn) on the CRCW PRAM, withO(n) expected number of processors only.Our results also improve known upper bounds on the expected space required for sequential graph algorithms. For example, we show that the problems of finding connected components, transitive closure, minimum spanning trees, and minimum cost paths have expected sequential spaceO(logn · log logn) on a deterministic Turing Machine. We use a simulation of the CRCW PRAM to get these expected sequential space bounds.This research was supported by National Science Foundation Grant DCR-85-03251 and Office of Naval Research Contract N00014-80-C-0647.This research was partially supported by the National Science Foundation Grants MCS-83-00630, DCR-8503497, by the Greek Ministry of Research and Technology, and by the ESPRIT Basic Research Actions Project ALCOM.  相似文献   

5.
Thedistance transform(DT) is an image computation tool which can be used to extract the information about the shape and the position of the foreground pixels relative to each other. It converts a binary image into a grey-level image, where each pixel has a value corresponding to the distance to the nearest foreground pixel. The time complexity for computing the distance transform is fully dependent on the different distance metrics. Especially, the more exact the distance transform is, the worse execution time reached will be. Nowadays, quite often thousands of images are processed in a limited time. It seems quite impossible for a sequential computer to do such a computation for the distance transform in real time. In order to provide efficient distance transform computation, it is considerably desirable to develop a parallel algorithm for this operation. In this paper, based on the diagonal propagation approach, we first provide anO(N2) time sequential algorithm to compute thechessboard distance transform(CDT) of anN×Nimage, which is a DT using the chessboard distance metrics. Based on the proposed sequential algorithm, the CDT of a 2D binary image array of sizeN×Ncan be computed inO(logN) time on the EREW PRAM model usingO(N2/logN) processors,O(log logN) time on the CRCW PRAM model usingO(N2/log logN) processors, andO(logN) time on the hypercube computer usingO(N2/logN) processors. Following the mapping as proposed by Lee and Horng, the algorithm for the medial axis transform is also efficiently derived. The medial axis transform of a 2D binary image array of sizeN×Ncan be computed inO(logN) time on the EREW PRAM model usingO(N2/logN) processors,O(log logN) time on the CRCW PRAM model usingO(N2/log logN) processors, andO(logN) time on the hypercube computer usingO(N2/logN) processors. The proposed parallel algorithms are composed of a set of prefix operations. In each prefix operation phase, only increase (add-one) operation and minimum operation are employed. So, the algorithms are especially efficient in practical applications.  相似文献   

6.
Given a set of n intervals representing an interval graph, the problem of finding a maximum matching between pairs of disjoint (nonintersecting) intervals has been considered in the sequential model. In this paper we present parallel algorithms for computing maximum cardinality matchings among pairs of disjoint intervals in interval graphs in the EREW PRAM and hypercube models. For the general case of the problem, our algorithms compute a maximum matching in O( log 3 n) time using O(n/ log 2 n) processors on the EREW PRAM and using n processors on the hypercubes. For the case of proper interval graphs, our algorithm runs in O( log n ) time using O(n) processors if the input intervals are not given already sorted and using O(n/ log n ) processors otherwise, on the EREW PRAM. On n -processor hypercubes, our algorithm for the proper interval case takes O( log n log log n ) time for unsorted input and O( log n ) time for sorted input. Our parallel results also lead to optimal sequential algorithms for computing maximum matchings among disjoint intervals. In addition, we present an improved parallel algorithm for maximum matching between overlapping intervals in proper interval graphs. Received November 20, 1995; revised September 3, 1998.  相似文献   

7.
In this paper we describe a simple parallel algorithm for list ranking. The algorithm is deterministic and runs inO(logn) time on an EREW PRAM withn/logn processors. The algorithm matches the performance of the Cole-Vishkin [CV3] algorithm but is simple and has reasonable constant factors.R. J. Anderson was supported by an NSF Presidential Young Investigator award and G. L. Miller was supported by NSF Grant DCR-85114961.  相似文献   

8.
This paper determines upper bounds on the expected time complexity for a variety of parallel algorithms for undirected and directed random graph problems. For connectivity, biconnectivity, transitive closure, minimum spanning trees, and all pairs minimum cost paths, we prove the expected time to beO(log logn) for the CRCW PRAM (this parallel RAM machine allows resolution of write conflicts) andO(logn · log logn) for the CREW PRAM (which allows simultaneous reads but not simultaneous writes). We also show that the problem of graph isomorphism has expected parallel timeO(log logn) for the CRCW PRAM andO(logn) for the CREW PRAM. Most of these results follow because of upper bounds on the mean depth of a graph, derived in this paper, for more general graphs than was known before. For undirected connectivity especially, we present a new probabilistic algorithm which runs on a randomized input and has an expected running time ofO(log logn) on the CRCW PRAM, withO(n) expected number of processors only. Our results also improve known upper bounds on the expected space required for sequential graph algorithms. For example, we show that the problems of finding connected components, transitive closure, minimum spanning trees, and minimum cost paths have expected sequential spaceO(logn · log logn) on a deterministic Turing Machine. We use a simulation of the CRCW PRAM to get these expected sequential space bounds.  相似文献   

9.
AVL (Adel'son-Vel'skii and Landis) trees are efficient data structures for implementing dictionaries. We present a parallel dictionary, using AVL trees, on the EREW PRAM by proposing optimal algorithms to performkoperations withp(1 ≤pk) processors. An explicit processor scheduling is devised to avoid simultaneous reads in our parallel algorithm to performksearches, which avoids the need for any additional memory in the parallelization. To perform multiple insertions and deletions, we identify rotations (in addition to AVL tree rotations) required to restore balance and present parallel algorithms to performpinsertions/deletions inO(logn+ logp) time withpprocessors.  相似文献   

10.
We present an optimal parallel algorithm for computing a cycle separator of ann-vertex embedded planar undirected graph inO(logn) time onn/logn processors. As a consequence, we also obtain an improved parallel algorithm for constructing a depth-first search tree rooted at any given vertex in a connected planar undirected graph in O(log2 n) time on n/logn processors. The best previous algorithms for computing depth-first search trees and cycle separators achieved the same time complexities, but withn processors. Our algorithms run on a parallel random access machine that permits concurrent reads and concurrent writes in its shared memory and allows an arbitrary processor to succeed in case of a write conflict.A preliminary version of this paper appeared as Improved Parallel Depth-First Search in Undirected Planar Graphs in theProceedings of the Third Workshop on Algorithms and Data Structures, 1993, pp. 407–420.Supported in part by NSF Grant CCR-9101385.  相似文献   

11.
Li  Jie  Pan  Yi  Shen  Hong 《The Journal of supercomputing》2003,24(3):251-258
Topological sort of an acyclic graph has many applications such as job scheduling and network analysis. Due to its importance, it has been tackled on many models. Dekel et al. [3], proposed an algorithm for solving the problem in O(log2 N) time on the hypercube or shuffle-exchange networks with O(N 3) processors. Chaudhuri [2], gave an O(log N) algorithm using O(N 3) processors on a CRCW PRAM model. On the LARPBS (Linear Arrays with a Reconfigurable Pipelined Bus System) model, Li et al. [5] showed that the problem for a weighted directed graph with N vertices can be solved in O(log N) time by using N 3 processors. In this paper, a more efficient topological sort algorithm is proposed on the same LARPBS model. We show that the problem can be solved in O(log N) time by using N 3/log N processors. We show that the algorithm has better time and processor complexities than the best algorithm on the hypercube, and has the same time complexity but better processor complexity than the best algorithm on the CRCW PRAM model.  相似文献   

12.
在EREW PRAM(exclusive-read and exclusive-write parallel random access machine)并行计算模型上,对范围很广的一类无向图的边极大匹配问题,给出时间复杂性为O(logn),使用O((n+m)/logn)处理器的最佳、高速并行算法.  相似文献   

13.
The LZ2 compression method is hardly parallelizable since it is known to be P-complete. In spite of such negative result, we show in this paper that the decoding process can be parallelized efficiently on an EREW PRAM model of computation with O(n/log(n)) processors and O(log2 n) time, where n is the length of the output string.  相似文献   

14.
Xin He  Yaacov Yesha 《Algorithmica》1990,5(1):129-145
We develop efficient parallel algorithms for ther-dominating set and thep-center problems on trees. On a concurrent-read exclusive-write PRAM, our algorithm for ther-dominating set problem runs inO(logn log logn) time withn processors. The algorithm for thep-center problem runs inO(log2 n log logn) time withn processors.Xin He was supported in part by an Ohio State University Presidential Fellowship, and by the Office of Research and Graduate Studies of Ohio State University. Yaacov Yesha was supported in part by the National Science Foundation under Grant No. DCR-8606366.  相似文献   

15.
Computing shortest paths in a directed graph has received considerable attention in the sequential RAM model of computation. However, developing a polylog-time parallel algorithm that is close to the sequential optimal in terms of the total work done remains an elusive goal. We present a first step in this direction by giving efficient parallel algorithms for shortest paths in planar layered digraphs.We show that these graphs admit special kinds of separators calledone- way separators which allow the paths in the graph to cross it only once. We use these separators to give divide- and -conquer solutions to the problem of finding the shortest paths between any two vertices. We first give a simple algorithm that works in the CREW model and computes the shortest path between any two vertices in ann-node planar layered digraph in timeO(log2 n) usingn/logn processors. We then use results of Aggarwal and Park [1] and Atallah [4] to improve the time bound toO(log2 n) in the CREW model andO(logn log logn) in the CREW model. The processor bounds still remain asn/logn for the CREW model andn/log logn for the CRCW model.Support for the first and third authors was provided in part by a National Science Foundation Presidential Young Investigator Award CCR-9047466 with matching funds from IBM, by NSF Research Grant CCR-9007851, by Army Research Office Grant DAAL03-91-G-0035, and by the Office of Naval Research and the Advanced Research Projects Agency under Contract N00014-91-J-4052, ARPA, Order 8225. Support for the second author was provided in part by NSF Research Grant CCR-9007851, by Army Research Office Grant DAAL03-91-G-0035, and by the Office of Naval Research and the Advanced Research Projects Agency under Contract N00014-91-J-4052 and ARPA Order 8225.  相似文献   

16.
A new general parallel algorithmic technique for computations on trees is presented. In particular, it provides the firstn/logn processor,O(logn)-time deterministic EREW PRAM algorithm for expression tree evaluation. The technique solves many other tree problems within the same complexity bounds.Richard Cole was supported in part by NSF Grants DCR-84-01633 and CCR-8702271, ONR Grant N00014-85-K-0046 and by an IBM faculty development award. Uzi Vishkin was supported in part by NSF Grants NSF-CCR-8615337 and NSF-DCR-8413359, ONR Grant N00014-85-K-0046, by the Applied Mathematical Science subprogram of the office of Energy Research, U.S. Department of Energy under Contract DE-AC02-76ER03077 and the Foundation for Research in Electronics, Computers and Communication, administered by the Israeli Academy of Sciences and Humanities.  相似文献   

17.
Fractional cascading is a technique designed to allow efficient sequential search in a graph with catalogs of total sizen. The search consists of locating a key in the catalogs along a path. In this paper we show how to preprocess a variety of fractional cascaded data structures whose underlying graph is a tree so that searching can be done efficiently in parallel. The preprocessing takesO(logn) time withn/logn processors on an EREW PRAM. For a balanced binary tree, cooperative search along root-to-leaf paths can be done inO((logn)/logp) time usingp processors on a CREW PRAM. Both of these time/processor constraints are optimal. The searching in the fractional cascaded data structure can be either explicit, in which the search path is specified before the search starts, or implicit, in which the branching is determined at each node. We apply this technique to a variety of geometric problems, including point location, range search, and segment intersection search.An earlier version of this work appears inProceedings of the 2nd Annual ACM Symposium on Parallel Algorithms and Architectures, July 1990, pp. 307–316. The first author's support was provided in part by National Science Foundation Grant CCR-9007851, by the U.S. Army Research Office under Grants DAAL03-91-G-0035 and DAAH04-93-0134, and by the Office of Naval Research and the Advanced Research Projects Agency under Contract N00014-91-J-4052, ARPA Order 8225. This research was performed while the second author was at Brown University. Support was provided in part by an NSF Presidential Young Investigator Award CCR-9047466, with matching funds from IBM, by National Science Foundation Grant CCR-9007851, by the U.S. Army Research Office under Grant DAAL03-91-G-0035, and by the Office of Naval Research and the Advanced Research Projects Agency under Contract N00014-91-J-4052, ARPA Order 8225.  相似文献   

18.
In this paper we describe a technique for finding efficient parallel algorithms for problems on directed graphs that involve checking the existence of certain kinds of paths in the graph. This technique provides efficient algorithms for finding dominators in flow graphs, performing interval and loop analysis on reducible flow graphs, and finding the feedback vertices of a digraph. Each of these algorithms takesO(log2 n) time using the same number of processors needed for fast matrix multiplication. All of these bounds are for an EREW PRAM.  相似文献   

19.
In this paper a general technique for reducing processors in simulation without any increase in time is described. This results in an O(√logn) time algorithm for simulating one step of PRIORITY on TOLERANT with processor-time product of O(n log logn); the same as that for simulating PRIORITY on ARBITRARY. This is used to obtain anO(logn/log logn + √logn (log logm ? log logn)) time algorithm for sortingn integers from the set {0,...,m ? 1},mn, with a processor-time product ofO(n log logm log logn) on a TOLERANT CRCW PRAM. New upper and lower bounds for ordered chaining problem on an allocated COMMON CRCW model are also obtained. The algorithm for ordered chaining takesO(logn/log logn) time on an allocated PRAM of sizen. It is shown that this result is best possible (upto a constant multiplicative factor) by obtaining a lower bound of Ω(r logn/(logr + log logn)) for finding the first (leftmost one) live processor on an allocated-COMMON PRAM of sizen ofr-slow virtual processors (one processor simulatesr processors of allocated PRAM). As a result, for ordered chaining problem, “processor-time product” has to be at least Ω(n logn/log logn) for any poly-logarithmic time algorithm. Algorithm for ordered-chaining problem results in anO(logN/log logN) time algorithm for (stable) sorting ofn integers from the set {0,...,m ? 1} withn-processors on a COMMON CRCW PRAM; hereN = max(n, m). In particular if,m =n O(1), then sorting takes Θ(logn/log logn) time on both TOLERANT and COMMON CRCW PRAMs. Processor-time product for TOLERANT isO(n(log logn)2). Algorithm for COMMON usesn processors.  相似文献   

20.
Simulations among concurrent-write PRAMs   总被引:1,自引:0,他引:1  
This paper is concerned with the relative power of the two most popular concurrent-write models of parallel computation, the PRIORITY PRAM [G], and the COMMON PRAM [K]. Improving the trivial and seemingly optimalO(logn) simulation, we show that one step of a PRIORITY machine can be simulated byO(logn/(log logn)) steps of a COMMON machine with the same number of processors (and more memory). We further prove that this is optimal, if processor communication is restricted in a natural way.Support for this research was provided by NSF Grants MCS-8402676 and MCS-8120790, DARPA Contract No. N00039-84-C-0089, an IBM Faculty Development Award, and an NSERC postgraduate scholarship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号