首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This study examined the physical and physiological differences between children and adults that affect body heat generation and losses and then developed a heat loss model for determining the temperature ratings of cold weather clothing designed for use by children of various ages. The thermal insulation values of selected jackets were measured using a heated manikin dressed in two base ensembles, and the temperature ratings were calculated using the model. The results indicated that the type of garments used in the base ensemble had a major effect on jacket ensemble insulation and the predicted comfort temperature. For a given level of insulation, the temperature rating decreased as the wearer's age and activity level increased. This is probably because children have a higher surface area per unit mass ratio than adults, and they lose heat faster. However, this effect is partially offset by their higher metabolic rates.  相似文献   

3.
The effect of the appraisers on the estimation of the thermal insulation of clothing ensembles was investigated. Nine appraisers, four experienced and five inexperienced, estimated the total thermal insulation by summing the values for individual garments. Lists of individual garments worn by workers were given during thermal comfort measurements carried out in shops and stores during one winter and summer. The beginners estimated the thermal insulation as accurately as the experienced appraisers. There were, however, great individual differences, for which three main reasons were found. Interpolation between the insulation provided by two garments was insufficient, and the insulation of these garments should be checked in more precise tables. Classification of the garments into heavy, medium and light clothing items was not adequate, and garments not listed by the workers confused the estimation given by different appraisers. The effect of error in thermal insulation on the PMV index is negligible if more than one appraiser estimates the thermal insulation and the mean of the estimates is used.  相似文献   

4.
Wu YS  Fan JT  Yu W 《Ergonomics》2011,54(3):301-313
Evaporative resistance and thermal insulation of clothing are important parameters in the design and engineering of thermal environments and functional clothing. Past work on the measurement of evaporative resistance of clothing was, however, limited to the standing posture with or without body motion. Information on the evaporative resistance of clothing when the wearer is in a sedentary or supine posture and how it is related to that when the wearer is in a standing posture is lacking. This paper presents original data on the effect of postures on the evaporative resistance of clothing, thermal insulation and permeability index, based on the measurements under three postures, viz. standing, sedentary and supine, using the sweating fabric manikin-Walter. Regression models are also established to relate the evaporative resistance and thermal insulation of clothing under sedentary and supine postures to those under the standing posture. The study further shows that the apparent evaporated resistances of standing and sedentary postures measured in the non-isothermal condition are much lower than those in the isothermal condition. The apparent evaporative resistances measured using the mass loss method are generally lower than those measured using the heat loss method due to moisture absorption or condensation within clothing. STATEMENT OF RELEVANCE: The thermal insulation and evaporative resistance values of clothing ensembles under different postures are essential data for the ergonomics design of thermal environments (e.g. indoors or a vehicle's interior environment) and functional clothing. They are also necessary for the prediction of thermal comfort or duration of exposure in different environmental conditions.  相似文献   

5.
The aim of this study was to design new functional work clothing for meat-cutters, paying particular attention to the metabolic requirements of the work and the thermal and general working conditions in slaughterhouses. On the basis of the results of the pilot study (review of the literature, questionnaires and interviews, work analysis, physiological measurements) different types of work clothing were designed for prolonged used during normal work in meat cutting. Physical material tests and measurements of thermal insulation values (l(cl)), and the follow-up of clothing maintenance were carried out. Further modifications and evaluations of work clothing were based on the opinions of meat-cutters and on the physiological trials in slaughterhouses. The final assembly of work clothing consists of three pieces (cotton/polyester): an apron, trousers with extra insulation in the lower back, and a work coat with extra insulation in the neck and shoulders, and at the wrists. The sleeves are protected against moisture by special textile material. The thermal insulation of this new set of work clothing together with long sleeved and legged underwear is 1.3 clo and it proved to be sufficient for thermal comfort in moderate work in an air temperature of 10 degrees C.  相似文献   

6.
Recently two Draft International Standards dealing with specifications of the conditions for thermal comfort (ISO DIS 7730) and measurement procedures (ISO DIS 7726) have been approved by the International Stadardisation Organisation (ISO). The American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) has made a standard with similar requirements for the thermal environment (ASHRAE, 1981). To verify the requirements, measurements of different thermal parameters have to be performed. Guidelines as to how and where to measure are also given in the standards. The present paper deals mainly with the requirements and measurements that are relevant for moderate thermal environments in places of residence, offices, hospitals and light industry. For evaluation of very hot or very cold surroundings, other methods are required. Only measurements of parameters that influence the perception of the thermal surroundings are included.  相似文献   

7.
Combinations of clothing provide different degrees of thermal insulation for various parts of the body. The effect of this uneven thermal insulation on general comfort is examined by using experimental clothing which could provide varying degrees of thermal resistance. The relationship between skin temperature and sensation was found to be approximately linear when the exposed areas were not large, and that clothing of the same thermal resistance can yield different sensations depending on the parts of the body involved.  相似文献   

8.
9.
Li J  Guo X  Wang Y 《Applied ergonomics》2012,43(5):909-915
Each piece of Western clothing has a unique temperature rating (TR); however, based on different wearing ways, one Tibetan robe ensemble can be used in various environments of the Tibetan plateau. To explain this environmental adaptation, thermal insulations and TR values of Tibetan robe ensembles in three typical wearing ways were measured by manikin testing and wearing trials, respectively. The TR prediction models for Tibetan robe ensembles were built in this research. The results showed that the thermal insulations of Tibetan robe ensembles changed from 0.26 clo to 0.91 clo; the corresponding TRs ranged from 9.90 °C to 16.86 °C because of different wearing ways. Not only the thermal insulation, but also the ways of wearing Tibetan robes was important to determining their TR values. The three TR models and a triangle area for each piece of Tibetan clothing explained its positive adaptation into the environment; this was different from the current TR models for Western clothing.  相似文献   

10.
《Ergonomics》2012,55(12):1617-1631
Abstract

Intrinsic thermal clothing insulation and surface air insulation were measured on human subjects by the use of indirect calorimetry. Four male clothing ensembles (0-1-1 -8 clo) and three female clothing ensembles (0-2-1-2 clo) were investigated. Using the standing position as a reference, the influence of sitting, bicycling (40r.p.m., 20 W), walking (3-75 km hour?1) and of light packing work on the thermal insulation was studied. The influence of an air velocity of 11ms?1 on thermal insulation during the standing and walking conditions was investigated. The results showed that: (i) intrinsic clothing insulation was maximal in the standing position. It was reduced by 8-18% in the seated position and by 30-50% during bicycling and walking. An air velocity of 11ms?1 did not influence the intrinsic clothing insulation during walking, but decreased it by 18% in the standing position; (ii) surface air insulation varied with activity and air velocity, but not with clothing. It was increased by up to 25% in the seated position, reduced by 7-26% during bicycling and by 30-50% during walking. An air velocity of 11 ms-1 reduced the surface air insulation by 50% in the standing position and 30% during walking.  相似文献   

11.
When a work scenario in protective clothing is a nominal two hours of work followed by a short break, the level of heat stress must be limited to conditions of thermal equilibrium. By comparing changes in maximum sustainable work rate in a fixed environment, differences due to different protective clothing ensembles can be determined. To illustrate this principle, two protective clothing ensembles were examined. The Basic Ensemble was a cotton blend coverall over gym shorts with hard hat, gloves and full face mask respirator. The Enhanced Ensemble added a light weight, surgical scrub suit under the coveralls, plus a hood worn under the hard hat. Five young, acclimated males were the test subjects. Environmental conditions were fixed at Tdb=32°C and Tpwb=26°C. After a physiological steady state was established at a low rate of work, treadmill speed was increased by 0.04 m/s every 5 min. The trial continued until thermal equilibrium was clearly lost. A critical treadmill speed was noted at the point thermal equilibrium was lost for each ensemble and subject. The drop in treadmill speed from the basic to enhanced ensemble was 11%. Based on measured values of average skin temperature and metabolic rate at the critical work rate and estimated values of clothing insulation, the average evaporative resistances for the basic and enhanced ensembles were 0.018 and 0.026 kPa m2/W, respectively.

Relevance to industry

Protective clothing decisions are based on the need to reduce the risk of skin contact with chemical or physical hazards. Sometimes over-protection of the skin results in a hazard secondary to the skin, such as heat stress. With or without over-protection, protective clothing decisions may affect the level of heat stress and result in lower rates of sustainable work. This paper illustrates the affects of a relatively small change in protective clothing requirements on the ability to work in the heat.  相似文献   


12.
Aptel M 《Applied ergonomics》1988,19(4):301-305
Required Clothing Insulation (IREQ) is a new thermal index submitted to the International Organisation for Standardisation (ISO) for discussion. It is designed to prevent general body cooling and is based on an analysis of heat exchanges. The thermal clothing insulation actually worn (lcl) is estimated using a new method, also submitted to ISO.

IREQ of 54 workers exposed to artificial cold (air temperature between −30° C and +10° C) was compared with lcl actually worn by these workers. The results of the present study show that, on average, the workers choose accurately lcl they need if their IREQ is below and up to 1·5 clo. Moreover, these workers prefer to wear garments which provide them with thermal comfort. If IREQ of workers is higher than 1·5–2 clo (i e, workers exposed to −20° C), it is difficult for them to increase their thermal insulation with additional garments. Although their lcl is not sufficient, there is no risk of gradual body cooling because of their continuous time exposure (CTE) which is shorter than the calculated Duration Limited Exposure (DLE). On the other hand, Wind Chill Index (WCI), which is proposed to prevent local cooling, is better adapted to prevent cold injuries than physiological thermal strain; for example, impairment of manual dexterity cannot be prevented with this index.  相似文献   


13.
The main objective of the present work is the assessment of the thermal insulation of clothing ensembles, both in static conditions and considering the effect of body movements. The different equations used to calculate the equivalent thermal resistance of the whole body, namely the serial, the global and the parallel methods, are considered and the results are presented and discussed for the basic, the effective and the total clothing insulations. The results show that the dynamic thermal insulation values are always lower than the corresponding static ones. The highest mean relative difference [(static-dynamic)/static] was obtained with the parallel method and the lowest with the serial. For Icl the mean relative differences varied from 0.5 to 13.4% with the serial method, from 5.6 to 14.6% with the global and from 7.2 to 17.7% with the parallel method. In addition, the dynamic tests presents the higher mean relative differences between the calculation methods. The results also show that the serial method always presents the higher values and the parallel method the lowest ones. The relative differences between the calculation methods {[(serial-global)/global] and [(parallel-global)/global]} were sometimes significant and associated to the non-uniform distribution of the clothing insulation. In fact, the ensembles with the highest thermal insulation values present the highest differences between the calculation methods.  相似文献   

14.
《Ergonomics》2012,55(8):1375-1389
The purpose of this study was to investigate the significance of wet underwear and to compare any influence of fibre-type material and textile construction of underwear on thermoregulatory responses and thermal comfort of humans during rest in the cold. Long-legged/long-sleeved underwear manufactured from 100% polypropylene in a 1 -by-1 rib knit structure was tested dry and wet as part of a two-layer clothing system. In addition cotton (1-by-l rib knit), wool (1-by-l rib knit), polypropylene (fishnet), and a double-layer material manufactured from 47% wool and 53% polypropylene (interlock knit) was tested wet in the clothing system. In the wet condition 175 g of water was distributed in the underwear prior to the experiment. The test was done on eight men (Ta = 10°C, RH = 85%, Va < 01 m/s), and comprised a 60min resting period. Skin temperature, rectal temperature, and weight loss were recorded during the test. Total changes in body and clothing weight were measured separately. Furthermore, subjective ratings on thermal comfort and sensation were collected. The tests demonstrated the significant cooling effect of wet underwear on thermoregulatory responses and thermal comfort. Further, the tests showed that textile construction of underwear in a two-layer clothing ensemble has an effect on the evaporation rate from clothing during rest in the cold resulting in a significant difference in mean skin temperature. The thickness of the underwear has more of an influence on the thermoregulatory responses and thermal comfort, than the types of fibres tested.  相似文献   

15.
Thirty-nine males and 18 females, in six groups, participated in six high altitude treks (each lasting 3–4 weeks and climbing up to 5500 m) in the Himalaya and Karakoram. Inverse relationships between mean overnight total insulation (sleeping bag plus clothing) and air temperature in tents were recorded for all treks. Average overnight thermal sensations varied little with air temperature as the subjects modified their clothing insulation to maintain thermal sensations warmer than ‘neutral’ for all treks. For combined treks, subjects adjusted their mean overnight total insulation up to 7 clo for thermal sensations of between 0 (‘neutral’) and +1 (‘slightly warm’) on average, measured on the standard seven-point thermal sensation scale developed for everyday low-altitude conditions. Very few subjects (3% of all daily responses, on average) reported ‘cool’ or ‘cold’ sensations. General tent discomfort increased with altitude suggesting that subjects interpreted tent comfort predominantly in terms of thermal outdoor conditions.  相似文献   

16.
This guide provides a simple design procedure for dealing with the requirements for a comfortable thermal environment. From the expected activity level and clothing insulation of the people concerned, a subjective temperature is calculated which will provide thermal comfort. This subjective temperature is a combination of physical parameters of the environment, ie, air and mean radiant temperatures, and air speed. A heating system must be designed to that the parameters combine to give the optimum subjective temperature. The guide also considers other possible sources of discomfort, and gives acceptable limits for them.  相似文献   

17.
A heat exchange model has been developed, by which the thermal stress associated with work in cold environments can be evaluated. Based on measurements of air temperature, mean radiant temperature, humidity and air velocity and measurements or estimates of activity level (energy metabolism) the model calculates a clothing insulation (IREQ) required to maintain body heat balance. IREQ may be regarded as an index of cold stress, and the value for IREQ specifies the insulation to be provided by clothing under given conditions, in addition to the insulation of the boundary air layer. IREQ, hence, may serve as a guideline for selection of appropriate clothing in cold environments. Basic insulation values of clothing (IcI) measured with thermal manikins can be used for this purpose, but need to be corrected to account for the effect of body motion, posture, wind penetration and moisture absorption before a comparison is made with IREQ.  相似文献   

18.
PREDICTOL is a PC program used to determine the thermophysiological duration limited exposures (DLE) in humans, nude or clothed, submitted to various climatic conditions (hot and cold climates) at rest or during a physical exercise. DLE are determined following different standards of the International Standardization Organization (ISO), especially ISO 7933 for hot environment and ISO-TR 11079 for cold environment. The original aspect of this program is that it can be used whatever the climatic conditions. The program presents two modes: an educational interactive mode and a scenario mode. The educational interactive mode demonstrates the thermophysiological effects, expressed as DLE, of different parameter changes (temperature, humidity, wind speed, metabolic heat production by physical exercise, clothing insulation and water vapor permeability). The scenario mode determines DLE for given various linked sequences as encountered in occupational, military or even recreational activities, each sequence being characterized by its climatic conditions, physical activities performed and by physical clothing properties. DLE given by PREDICTOL are correlated to those obtained in various controlled climatic laboratory conditions (r = 0.86; P < 0.001). PREDICTOL is written in Visual Basic 6.0. A "help menu" is provided to explain the use of the program and give information concerning the equations used to calculate both the thermal balance and DLE.  相似文献   

19.
J E Brooks  K C Parsons 《Ergonomics》1999,42(5):661-673
This report presents the results of an ergonomics investigation into human thermal comfort using an automobile seat heated with an encapsulated carbonized fabric (ECF). Subjective and objective thermal comfort data were recorded while participants sat for 90 min in a heated and a non-heated automobile seat in an environmental chamber. Eight male participants each completed eight experimental sessions in a balanced order repeated measures experimental design. The conditions in the chamber were representative of a range of cool vehicle thermal environments (5, 10, 15 and 20 degrees C; in the 20 degrees C trial participants sat beside a 5 degrees C 'cold wall'). Participants in the heated seat condition used the heating controller with separate temperature control over the back of the seat (squab) and bottom of the seat (cushion) in an effort to maintain their thermal comfort while wearing the provided clothing, which had an estimated insulation value of 0.9 Clo. The trials showed that participants' overall sensations remained higher than 'slightly cool' in the heated seat at all temperatures. Participants' overall discomfort remained lower (i.e. more comfortable) than 'slightly uncomfortable' at temperatures ranging down to nearly 5 degrees C in the heated seat. Hand and foot comfort, sensation and temperature were similar in both seats. Asymmetric torso and thigh skin temperatures were higher in the heated seat although no significant discomfort was found in the front and back of the torso and thigh in either seat. Participants reported no significant difference in alertness between the control and heated seat.  相似文献   

20.
S K Chang  R R Gonzalez 《Ergonomics》1999,42(8):1038-1050
Heat acclimation-induced sweating responses have the potential of reducing heat strain for chemical protective garment wearers. However, this potential benefit is strongly affected by the properties of the garment. If the clothing ensemble permits sufficient evaporative heat dissipation, then heat acclimation becomes helpful in reducing heat strain. On the other hand, if the garment creates an impenetrable barrier to moisture, no benefit can be gained from heat acclimation as the additional sweating cannot be evaporated. Ten subjects were studied exercising on a treadmill while wearing two different chemical protective ensembles. Skin heat flux, skin temperature, core temperature, metabolic heat production and heart rate were measured. It was found that the benefit of heat acclimation is strongly dependent on the ability of the body to dissipate an adequate amount of heat evaporatively. The evaporative potential (EP), a measure of thermal insulation modified by moisture permeability, of the clothing ensemble offers a quantitative index useful to determine, a priori, whether heat acclimation would be helpful when wearing protective clothing system. The data show that when EP is < 15%, heat acclimation affords no benefit. An evaporative potential graph is created to aid in this determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号