首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
结合有限元分析和实验研究,基于与普通滚压工艺的对比,对超声振动辅助滚压强化钛合金表面的残余应力场进行分析,获得了沿改性层深度方向的残余应力变化和瞬态应力分布云图。结果表明:与普通滚压相比,超声振动辅助滚压可改变滚压头和材料表面接触力的作用方式,使应力波沿着材料深度方向动态传播,从而产生更深的残余压应力影响层,并导致压应力层下移。在实验参数条件下,最大残余压应力值和表面残余应力值都随着静压力的增大而显著增大;随着主轴转速的增大,最大残余压应力值明显单调增加,而最大残余压应力层深度逐渐减小;振幅对残余应力场的影响不十分显著。  相似文献   

2.
目的探究超声滚压强化技术对7075铝合金工件表面性能的影响。方法对7075铝合金棒状试样精车加工后进行了超声滚压强化处理。综合使用粗糙度测量仪、表面显微硬度仪、金相显微镜以及X射线衍射应力分析仪,研究了处理前后工艺参数中的压下量对试样的表面粗糙度、表面显微硬度、表面微观组织及表面残余应力等表面性能的影响。结果超声滚压强化处理后,试样表面粗糙度由0.976μm降低至0.047μm,表面显微硬度由105.6HV0.2提高至119HV0.2,显微硬度提高了15%。精车加工后,精车试样的表层组织与心部组织几乎无变化。超声滚压强化后,相对心部组织而言,表层晶粒组织得到显著细化,表层均为残余压应力,压应力深度为1.75 mm。残余压应力最大值位于最表层,最大为-174.0 MPa,且距离最表层越远,残余压应力总体呈减小趋势。结论通过对比研究精车试样与超声滚压试样,发现超声滚压强化工艺可以大大地降低试样表面粗糙度,显著地细化表层试样晶粒与提高表面硬度,改善残余应力的分布,并引入一定深度的残余压应力。  相似文献   

3.
采用表面超声滚压技术对EA4T车轴表面进行强化处理;利用正交试验法对表面超声滚压工艺参数进行优化。采用粗糙度仪、显微硬度计和残余应力测试仪分别测量车轴表层处的粗糙度、显微硬度和残余应力;并用扫描电镜观察截面的微观组织。结果表明:表面超声滚压可降低EA4T车轴表面粗糙度,获得较高的表面残余压应力,提高车轴表面硬度,并使表层晶粒细化。通过正交试验得出,对粗糙度、表层硬度、硬化层深度和表面残余应力影响最显著的因素分别为进给量、主轴转速、滚压力和主轴转速。本试验条件下选出的最佳工艺参数为主轴转速10 r/min、进给量0.10mm/r、滚压力300 kg。  相似文献   

4.
焦锋  兰帅领  王毅  赵波 《表面技术》2020,49(11):334-341
目的 实现高效率、低表面粗糙度和大残余压应力制造。方法 利用ANSYS软件建立12Cr2Ni4A齿轮钢外圆超声滚压有限元模型,分析超声滚压加工后,残余应力场的分布规律。搭建12Cr2Ni4A齿轮钢试验平台,研究工艺参数对工件表层残余应力的影响规律。同时对有限元模型进行验证。运用非线性曲线拟合方法,构建超声滚压工件表面残余应力及其表面粗糙度预测模型,基于赫兹接触理论和压痕几何关系,建立外圆超声滚压加工效率理论模型。结果 经过超声滚压加工后,12Cr2Ni4A齿轮钢表层残余压应力显著提升,且沿滚压深度方向,呈现先增大后减小趋势。最大残余压应力随着初始静压力的增加,峰值点逐渐从表层向次表层移动,最大残余压应力值为?654 MPa,此时硬化层深度约为0.8 mm。经优化得到最优参数为:F=315 N,vf=0.32 mm/min,n=269 r/min。结论 12Cr2Ni4A齿轮钢表层残余压应力随静压力的增大,呈线性增加趋势,随主轴转速和进给量的增大略微减小。参数优化后,加工效率得到进一步提升,工件能够获得良好的表面状态。  相似文献   

5.
7050铝合金二维超声滚压加工残余应力场研究   总被引:2,自引:0,他引:2  
郑建新  蒋书祥 《表面技术》2017,46(12):265-269
目的研究二维超声滚压后7050铝合金残余应力场的形成过程和表层残余应力的分布规律。方法利用有限元软件模拟二维超声滚压加工,分析残余应力场的形成过程及表层残余应力的分布规律;采用正交试验方法进行7050铝合金二维超声滚压加工试验,研究工艺参数对表面残余应力的影响规律,并与有限元分析结果相对比,验证有限元模拟的合理性。结果在二维超声滚压加工过程中,7050铝合金表层材料应力随时间先减小后增大,最后趋于稳定,形成残余应力。残余压应力沿滚压深度方向先增大后减小,再转化为残余拉应力。残余压应力层厚度约为1.05 mm,最大残余压应力值约为285 MPa。在相同的工艺参数下,有限元分析结果与试验结果基本吻合。静压力对表面残余应力的形成影响最大,表面残余压应力随静压力的增大而增大。结论二维超声滚压加工使7050铝合金表面发生剧烈的塑性变形,并形成一定深度的残余压应力。铝合金表面残余压应力随静压力的增大而增大,而与转速和进给量无关。  相似文献   

6.
为实现7050铝合金高效优质表面强化,将高速超声引入到二维超声滚压中,研究了7050铝合金高速二维超声滚压后的表面质量。首先采用单因素试验法对7050铝合金进行高速二维超声滚压加工试验,利用超景深测量仪和扫描电镜观察并对比分析了车削后与滚压后的表面形貌和微观组织;采用粗糙度测量仪、显微硬度计和X射线衍射仪测量滚压后的表面粗糙度、显微硬度和表面残余应力,并分析了不同工艺参数对表面质量的影响。结果表明:7050铝合金经高速二维超声滚压加工后,试件表面更为光滑,表层组织更致密,能有效降低表面粗糙度值、提高显微硬度,并形成残余压应力,表面粗糙度最低为0. 68μm,降幅达65%,表面显微硬度最大为156 HV0. 1,增幅达72%,表面残余压应力最高达-329. 5 MPa。在高速二维超声滚压中,7050铝合金工件表面粗糙度主要受静压力和转速影响,表面显微硬度受静压力、进给量和振幅影响较大,而表面残余压应力主要受进给量的影响。7050铝合金加工时表面组织及性能主要受冷塑性变形和温度场的综合影响,高速二维超声滚压加工工艺能够实现7050铝合金的优质高效强化处理。  相似文献   

7.
目的 研究不同强力滚压工艺参数对超高强度钢表层残余应力分布的影响.方法 针对45CrNiMoVA超高强度钢的表面强化问题提出了强力滚压工艺.采用硬质合金滚压刀具,对试样施加超过2500 N的滚压力,进行强力滚压强化单因素试验.基于SEM和EBSD测试,分析强力滚压对超高强度钢表层微观组织的影响,进而对不同滚压参数下超高强度钢表层残余应力分布与表面残余应力变化进行分析.最后通过ABAQUS有限元仿真建立了超高强度钢强力滚压强化表层残余应力场预测模型,对滚压强化表层残余应力仿真值与试验值进行了对比.结果 强力滚压使得超高强度钢表层的平均晶粒尺寸从0.813μm降低为0.474μm,且马氏体晶粒沿滚压方向发生了变形滑移.超高强度钢经强力滚压后,表层残余压应力由–276 MPa提升至最高–942 MPa,残余压应力深度由0.2 mm增加至最大0.9 mm.超高强度钢强力滚压试验和仿真残余应力沿径向的分布规律一致,滚压表面残余压应力仿真值与试验值的误差小于27%.结论 测试分析表明,强力滚压可有效细化超高强度钢45CrNiMoVA表层晶粒并且改善残余应力分布,残余压应力值随着滚压深度和滚压次数的增加而增大,随进给量和工件转速的增大而减小.强力滚压仿真较为准确地预测出滚压强化表层残余应力分布情况,为超高强度钢45CrNiMoVA等一类难加工材料构件的表面强化问题提供了工艺指导.  相似文献   

8.
研究了超声波光整强化工艺对40Cr表面粗糙度及残余应力的影响,实验发现,初始粗糙度为2.48μm的轴件处理后可以降为0.04μm。采用盲孔法对表面残余应力进行测试,结果表明:未经处理的部分表面残余应力整体为拉应力,其中σ1值稳定在30 MPa左右,为拉应力;σ2随着层深增加由压应力转变为拉应力,且数值在10 MPa以下。经过处理后的表面残余应力均为压应力,该工艺对材料的影响层深度介于1至1.5 mm之间,主应力σ1和σ2值近似且稳定于160至170 MPa之间,随着钻孔深度的增加,残余压应力测试值有略微降低的趋势。  相似文献   

9.
《轻金属》2019,(1)
采用机械喷丸、激光冲击强化与深滚压三种表面强化工艺处理7075高强铝合金试样,在表面残余应力水平相当的情况下分析表面粗糙度、表层显微硬度与表层残余应力场的分布特性及对疲劳性能的影响方式与程度。结果表明,表面强化工艺引入的表层残余压应力场的分布合理性及其抵抗外部应力松弛的能力是改善试样疲劳寿命的最关键因素,机械喷丸与激光冲击强化处理的应力影响层浅且表面粗糙度导致的应力集中程度较大,对低周大应力疲劳性能的改善作用较为有限,而深滚压处理的应力场影响层深且具有高的稳定性,可同时改善试样的高周与低周疲劳性能。  相似文献   

10.
目的研究在不同加工参数下,对18CrNiMo7-6齿轮钢进行超声滚压加工后表层质量的变化,并得出其显著性顺序。建立表面粗糙度的解析模型,研究进给量、滚压次数和初始表面粗糙度对表面质量的影响,并与试验结果作对比。方法采用车刀将固定在车床卡盘上的18CrNiMo7-6齿轮钢棒状材料的端面进行精车后,采用超声滚压试验装置对精车后端面进行加工处理。采用三维形貌测量仪等专用设备,对加工完成后的试样表面表面粗糙度、表层显微硬度、表面二维形貌和表层残余应力等进行检测,然后利用正交试验,寻找对试样表面粗糙度影响的显著性因素,建立表面粗糙度的解析模型,对比试验数据和解析模型数据,研究超声滚压对表面粗糙度、表面二维形貌、表层显微硬度和表层残余应力的影响。结果得到的显著性顺序为进给量、主轴转速、次数、振幅、静压力,并且前述给出的粗糙度解析模型可以较好地预测超声滚压后的表面粗糙度,计算得到的理论数据与试验数据较为接近。试样表面的粗糙度Ra由车削加工的3.003μm减小为0.468μm,齿轮钢表层形成了明显的加工硬化层,其深度约为260μm;表层显微硬度从未处理的360.9HV升至417.6HV,比率为15.7%;表层内形成了勺形分布的残余应力,在距离表层60μm处,最大残余压应力形成,为–790.97 MPa,残余压应力层深度达到了800μm。结论超声滚压加工可以显著提高18CrNiMo7-6齿轮钢试样的表面性能,其中以滚压进给量的影响最为显著。  相似文献   

11.
Roller-burnishing is used in place of other traditional methods to finish 6061-T6 aluminum alloy. How to select the burnishing parameters to improve surface integrity (reduce surface roughness, increase surface microhardness and produce compressive residual stress) is especially crucial. This paper presents an investigation of the effect of roller-burnishing upon surface roughness, surface microhardness and residual stress of 6061-T6 aluminum alloy. The residual stress distribution in the surface region that was burnished is determined using a deflection-etching technique. Mathematical models correlating three process parameters: burnishing speed, burnishing depth of penetration and number of passes, are established. A Group Method of Data Handling Technique, GMDH, is used. It is shown that low burnishing speeds and high depths of penetration produce much smoother surfaces, whereas a combination of high speed with high depth leads to rougher surfaces because of chatter. The optimum number of passes that produces a good surface finish was found to be 3 or 4. The maximum value of compressive residual stress decreases with an increase in burnishing speed. The maximum compressive residual stress increases with an increase in burnishing depth of penetration and/or number of passes.  相似文献   

12.
An investigation into roller burnishing   总被引:1,自引:0,他引:1  
Burnishing, a plastic deformation process, is becoming more popular as a finishing process: thus, how to select the burnishing parameters to reduce the surface roughness and to increase the surface microhardness is especially crucial. This paper reports the results of an experimental program to study the influence of different burnishing conditions on both surface microhardness and roughness: namely, burnishing speed, force, feed, and number of passes. Also, it reports the relationship between residual stress and both burnishing speed and force. The residual stress distribution in the surface region that is orthogonally burnished is determined using a deflection etching technique. Mathematical models are presented for predicting the surface microhardness and roughness of St-37 caused by roller burnishing under lubricated conditions. Variance analysis is conducted to determine the prominent parameters and the adequacy of the models. From an initial roughness of about Ra 4.5 μm, the specimen could be finished to a roughness of 0.5 μm. It is shown that the spindle speed, burnishing force, burnishing feed and number of passes have the most significant effect on both surface microhardness and surface roughness and there are many interactions between these parameters. The maximum residual stress changes from tensile to compressive with an increase in burnishing force from 5 to 25 kgf. With a further increase in burnishing force from 25 to 45 kgf, the maximum residual stress increases in compression.  相似文献   

13.
Burnishing is a surface treatment process widely used to improve fatigue and corrosion resistance of metal components by introducing a compressive residual stress layer. However, the measurement of residual stress by X-ray diffraction is expensive, time consuming, and tedious. Hole drilling method is quick and simple, but it is destructive and provides limited resolution in depth direction. This work presents a quick method to determine the nature and magnitude of residual stress by using Almen strips. Inspired by the application of Almen strips in shot peening, the deflection of the burnished Almen strips under different burnishing conditions were measured. In addition, a finite element simulation model has been developed to predict residual stresses and deflection which were compared with the experimental results. Contact conditions with different combinations of sliding and rolling were investigated in the simulations to understand the contact nature in a burnishing process. It was found that the deflection of Almen strip reflects the magnitude and penetration depth into subsurface of the induced residual stress. The contact condition during burnishing is either pure sliding or a mixed mode of sliding and rolling, but not pure rolling.  相似文献   

14.
Finite Element Modeling of Roller Burnishing Process   总被引:1,自引:0,他引:1  
Hard roller burnishing is a cost effective surface enhancement process where a ceramic ball rolls on the machined surface under a high pressure and flattens the roughness peaks. It not only improves surface finish but also imposes favorable compressive residual stresses and raises hardness in functional surfaces, which can lead to long fatigue life. Most research in the past focused on experimental studies. There is still a special need for a reliable finite element (FEM) model that provides a fundamental understanding of the process mechanics. In this study, 2D and 3D FEM models for hard roller burnishing were established. The simulation results (i.e. surface deformation and residual stress) were evaluated and compared between initial hard turned and burnished surfaces. The predicted residual stress was validated with the experimental data obtained from the literature.  相似文献   

15.
The residual stress distribution in the surface region of solution treated and aged 7075 aluminium alloy workpieces that are orthogonally burnished under lubricated condition is determined using a deflection etching technique. The residual stress at the surface is low compressive and increase rapidly with an increase in depth beneath the burnished surface to a maximum compressive then decreases gradually with further increase in depth becoming vanishingly small tensile or compressive. The maximum residual stress and depth of the stressed region increase in burnishing speed, force and an increase, to some extent, in burnishing time. The results are interpreted qualitatively in terms of the variations in the amount of surface region deformation produced by changes in burnishing conditions.  相似文献   

16.
表面质量完整性是决定车轴使用寿命和机车行驶安全的关键因素,滚压工艺对车轴表面质量完整性产生重要影响。通过EA4T车轴滚压正交试验,研究了工艺参数对表面质量完整性影响规律,建立了滚压表面粗糙度与残余应力预测模型,并进行回归方程方差分析与残差分析,验证了预测模型的有效性。结果表明:工艺参数中进给速度对表面粗糙度和残余应力的作用最为显著,贡献率分别为粗糙度91.70%、周向残余应力48.95%、轴向残余应力48.18%。此外,滚压道次与滚压深度分别对周向和轴向残余应力有较大影响,贡献率分别为39.15%和33.19%;与其它因素相比,滚压速度对表面硬度影响较大,贡献率达到54.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号