首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radish and grain sorghum germination and sorghum growth were inhibited in a synergistic manner by combinations of vanillic andp-hydroxybenzoic acids. At threshold inhibition levels, 2.5 × 10–3 M vanillic acid-treated radish seeds had 71 % of control germination after 24 hr and 2.5 × 10–3 Mp-hydroxybenzoic acid-treated radish yielded 95% germination. A mixture of 2.5 × 10–3 M of each of these two phytotoxins showed 52% germination after 24 hr. Equimolar mixtures of 5 × 10–3 M vanillic andp-hydroxybenzoic acids allowed sorghum germination of 60% of untreated seeds after 24 hr, whereas separate treatments of individual phenols had 93% and 96% of control seed germination. Sorghum root and shoot elongation and total seedling growth were more sensitive than germination to vanillic andp-hydroxybenzoic acid treatments, and synergistic effects also were apparent. A combination of 5 × 10–3 M vanillic with 5 × 10–3 Mp-hydroxybenzoic reduced root length more than either did individually, and a mixture of 5 × 10–4 M vanillic with 5 × 10–4 Mp-hydroxybenzoic acid reduced sorghum seedling growth to approximately that resulting from a 10–3 M concentration of either phenol alone. Phytotoxin levels inhibitory to sorghum growth caused small increases in lower leaf surface diffusive resistance, but did not close stomates, and this effect was not judged to be the cause of reduced sorghum growth.  相似文献   

2.
Phenolic compounds have been identified as the most common allelochemicals produced by higher plants. Inhibitions of cinnamic acid, its related phenolic derivatives, and abscisic acid (ABA) on seedling growth and seed germination of lettuce were studied.trans-Cinnamic acid, ando-,m-, andp-coumaric acids inhibited the growth of etiolated seedlings of lettuce at concentrations higher than 10–4 M and seed germination above 10–3 M. Coumarin inhibited seedling growth and seed germination at 10–5 M or above. Chlorogenic acid inhibited seedling growth above 10–4 M, but did not inhibit seed germination at 10–5–5×10–3 M. Low concentrations (below 10–3 M) of caffeic and ferulic acids promoted the elongation of hypocotyls, but higher concentrations (over 10–3 M) inhibited seedling growth and seed germination. These phenolic compounds and abscisic acid had additive inhibitory effects both on seedling growth and seed germination. The inhibition on lettuce was reversed by caffeic and ferulic acids at concentrations lower than 10–3 M except for the inhibition of germination by coumarin. These results suggest that in naturetrans-cinnamic acid,o-, m-, p-coumaric acids, coumarin, and chlorogenic acid inhibit plant growth regardless of their concentration. However, caffeic and ferulic acids can either promote or inhibit plant growth according to their concentration.  相似文献   

3.
Experiments were designed to test the hypothesis that interference with chlorophyll metabolism may be one mechanism of inhibition of plant growth in allelopathic interactions. Effects of ferulic,p-coumaric, and vanillic acids on soybean and grain sorghum growth and chlorophyll content were quantified and compared after seedlings were treated with these compounds in a nutrient culture. Following a 6-day treatment cycle, dry weights of soybean seedlings were reduced by both 10–3 M and 5 × 10–4 M treatments of ferulic,p-coumaric and vanillic acids. Soybean weight reductions in each case were paralleled by a significant reduction in the concentration (g Chl/mg dry wt) of chlorophylls a and b and total chlorophyll in the unifoliate leaves. Sorghum seedling growth was also reduced by each of the compounds at the 5 × 10–4 M level, but leaf chlorophyll concentration was not below that of control plants.  相似文献   

4.
The germination rates of cotton and wheat seeds were significantly affected by various extracts of wheat mulch and soils collected from the wheat field. This toxicity was even more pronounced against seedling growth. Five allelochemics: ferulic,p-coumaric,p-OH benzoic, syringic, and vanillic acids, were identified from the wheat mulch and its associated soil. Quantitatively, ferulic acid was found at higher concentrations thanp-coumaric acid in the soil. Various concentrations of ferulic andp-coumaric acids were toxic to the growth of radish in a bioassay. The functional aspects of allelochemic transfer from decaying residue to soil and the subsequent microbial degradation within agroecosystems are discussed, particularly as they relate to wheat crop rotation, with wheat and cotton, in Pakistan.  相似文献   

5.
Reversible sorption of phenolic acids by soils may provide some protection to phenolic acids from microbial degradation. In the absence of microbes, reversible sorption 35 days after addition of 0.5–3 mol/g of ferulic acid or p-coumaric acid was 8–14% in Cecil Ap horizon and 31–38% in Cecil Bt, horizon soil materials. The reversibly sorbed/solution ratios (r/s) for ferulic acid or p-coumaric acid ranged from 0.12 to 0.25 in Ap and 0.65 to 0.85 in Bt horizon soil materials. When microbes were introduced, the r/s ratio for both the Ap and Bt horizon soil materials increased over time up to 5 and 2, respectively, thereby indicating a more rapid utilization of solution phenolic acids over reversibly sorbed phenolic acids. The increase in r/s ratio and the overall microbial utilization of ferulic acid and/or p-coumaric acid were much more rapid in Ap than in Bt horizon soil materials. Reversible sorption, however, provided protection of phenolic acids from microbial utilization for only very short periods of time. Differential soil fixation, microbial production of benzoic acids (e.g., vanillic acid and p-hydroxybenzoic acid) from cinnamic acids (e.g., ferulic acid and p-coumaric acid, respectively), and the subsequent differential utilization of cinnamic and benzoic acids by soil microbes indicated that these processes can substantially influence the magnitude and duration of the phytoxicity of individual phenolic acids.  相似文献   

6.
The effects ofp-coumaric, ferulic, chlorogenic, and vanillic acids on photosynthesis and protein synthesis by isolated leaf cells of velvetleaf (Abutilon theophrasti Medik) were investigated. Photosynthesis and protein synthesis were measured in cell suspensions by the incorporation of14CO2 and [14C]leucine, respectively. None of the tested phenolic acids except vanillic reduced photosynthesis by more than 50% at the highest concentration and 30 min of incubation. At 100M concentrations and 60-min incubation periods,p-coumaric, ferulic, chlorogenic, and vanillic acids inhibited photosynthesis by 33, 37, 57, and 65%, respectively. Ferulic acid was the most inhibitory to protein synthesis and reduced the incorporation of [14C]leucine by 50% at about 1.0M after 60 min of incubation. At the highest concentrations tested in this study, vanillic and ferulic acids were inhibitory to photosynthesis and protein synthesis, respectively, whereas chlorogenic andp-coumaric acids did not inhibit either physiological process. The maximum inhibition of protein synthesis by chlorogenic acid was 19% and by vanillic acid was 28% at 100M concentrations. Chlorogenic, vanillic, andp-cou-maric acids at 0.1M caused increased protein synthesis over the untreated control. Overall, photosynthesis was more sensitive than protein synthesis to the four phenolic acids tested.Florida Agricultural Experiment Station Journal Series No. 9228.  相似文献   

7.
Experiments were conducted to determine how plant responses to mixtures of allelochemicals may change as the proportion of roots in contact with allelochemicals is modified. Thirteen-day-old cucumber seedlings were treated with ferulic and/orp-coumaric acid in a split-root nutrient culture system. Leaf areas were determined just prior to treatment and at harvest, 24 hr after treatment. Ferulic acid was more inhibitory to cucumber leaf expansion thanp-coumaric acid. The effects of ferulic andp-coumaric acids on leaf expansion were additive. For individual acids, mixtures of ferulic andp-coumaric acids in the same container and combinations of ferulic andp-coumaric acids in separate containers, the inhibition of leaf expansion was directly related to the product of the concentration of the acid(s) and the proportion of roots treated with the acid(s). Pretreatment with 0.2 or 0.4 mM ferulic acid and subsequent treatment with 0.5 mM ferulic acid failed to show evidence of acclimation by cucumber seedlings.The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of products named, nor criticism of similar ones not mentioned.  相似文献   

8.
This study investigated potential phytotoxic effects on germination and root growth of 21 plant secondary metabolites (sinapinic, syringic, vanillic, ferulic, p-coumaric, chlorogenic, gallic, gentisic, protocatechuic, p-hydroxybenzoic, and trans-cinnamic acids, and eucalyptol, quercetin, vanillin, syringaldehyde, rutin, 2-benzoxazolinone, protocatechualdehyde, tyrosol, juglone, and l-mimosine) in the plant model Arabidopsis thaliana. Eleven of the 21 molecules showed significant inhibitory effects on germination, and 17 inhibited root growth. Inhibitory effects on root growth were more evident when nutrients were not added. We present dose–response curves for germination effects and IC50 values for each compound, along with possible explanations of the observed inhibitory actions in terms of molecular structure.  相似文献   

9.
Phenolic acid treatments of cucumber seedlings (Cucumis sativus cv “Early Green Cluster”) inhibited transpiration, water utilization, leaf area, and absolute and relative rates of leaf expansion. The cinnamic acids, ferulic and p-coumaric acids, were two to five times more inhibitory than the benzoic acids, p-hydroxybenzoic acid and vanillic acid. When phenolic acid concentrations were maintained at inhibitory concentrations through multiple successive treatments, percent inhibition of water utilization remained relatively constant for a given concentration and phenolic acid, percent inhibition of leaf area initially increased and then leveled off to a constant percent, and percent inhibition of transpiration and rates of leaf area expansion declined over time. Subsequently, p-coumaric acid was chosen as the model compound for further study. When p-coumaric acid was inhibitory, percent inhibition of transpiration, water utilization, and rates of leaf area expansion of actively growing leaves rapidly declined (i.e., was lost) as p-coumaric acid concentrations surrounding roots decreased. Absolute and relative rates of leaf expansion, for example, declined approximately 12 and 14%, respectively, for every 0.1 mM decline in p-coumaric acid concentration. Uptake of p-coumaric acid by cucumber seedling roots was continuous over the 24- or 36-hr periods monitored, but was not consistently related to the initial p-coumaric acid treatment concentrations. However, declining p-coumaric acid concentrations monitored at 6- or 12-hr intervals over the 24- or 36-hr periods continued to be highly correlated to the initial p-coumaric acid treatment concentrations. A 25% depletion by 13-d-old cucumber seedlings took 8.5, 12, 19.5, 25, and 29.5 hr for 0.125-, 0.25-, 0.5-, 0.75-, and 1-mM treatments, respectively. Uptake during periods when phenolic acid concentrations and root uptake (depletion from solution) were related appeared to represent periods dominated by apoplastic movement into the intercellular spaces of roots. Uptake during periods without this relationship likely represented periods dominated by symplastic movement. The ability of cucumber seedlings to modify active phenolic acid concentrations surrounding their roots suggests that cucumber seedling can directly influence the magnitude of primary and secondary effects of phenolic acids through feedback regulation.  相似文献   

10.
Aqueous extracts of fresh leaves and organic soil of northern sheep laurel (Kalmia angustifolia var.angustifolia) were found to be inhibitory to the growth of black spruce (Picea mariana) germinants. Primary root growth of black spruce was more affected by the extracts than was shoot growth. The growth inhibition caused by the leaf extract was most pronounced under acidic conditions (pH 3–4). The aqueous extract ofKalmia leaves contained ferulic, vanillic, syringic, gentisic,m-coumaric,p-coumaric,o-hydroxyphenylacetic, andp-hydroxybenzoic acids as well as some other unknown compounds. These compounds were isolated from the aqueous extract ofKalmia leaves by ethyl acetate extraction and identified using thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). Bioassay indicated that the overall toxicity of the phenolic compounds to black spruce appeared to increase in the order ofo-hydroxyphenylacetic,p-hydroxybenzoic, vanillic,p-coumaric, gentisic, syringic, ferulic, andm-coumaric acids.  相似文献   

11.
This study was conducted to test the hypothesis that interfering with chlorophyll metabolism and ion uptake may be mechanisms through which some phenolic acids inhibit the growth of cowpea seedlings. Three concentrations (10–4 M, 5 × 10–4 M, and 10–3 M) of each of syringic, caffeic, and protocatechuic acids were used to test their effects using sand-culture medium. It was found that seedling growth, chlorophyll a, total chlorophyll, chlorophyll a/b ratio, and the uptake of N, P, K, Fe, and Mo were significantly reduced by most of the test concentrations of the phenolic acids. However, chlorophyll b content and the Mg uptake were not significantly affected by all the phenolic acid concentrations. Calcium uptake was significantly inhibited by 5 × 10–4 M and 10–3 M of caffeic acid and 5 × 10–4 M of protocatechuic acid. In most cases, the reduction in dry weight was parallel to the reduction in chlorophyll content and ion uptake, and the reduction in chlorophyll was also parallel to the reduction in ion uptake. The relationships among the inhibition of dry weights, chlorophyll content, and ion uptake are briefly discussed.  相似文献   

12.
Soil core (0–2.5 and/or 0–10 cm) samples were taken from wheat no till, wheat-conventional till, and fallow-conventional till soybean cropping systems from July to October of 1989 and extracted with water in an autoclave. The soil extracts were analyzed for seven common phenolic acids (p-coumaric, vanillic,p-hydroxybenzoic, syringic, caffeic, ferulic, and sinapic; in order of importance) by high-performance liquid chromatography. The highest concentration observed was 4 g/g soil forp-coumaric acid. Folin & Ciocalteu's phenol reagent was used to determine total phenolic acid content. Total phenolic acid content of 0- to 2.5-cm core samples was approximately 34% higher than that of the 0- to 10-cm core samples. Phenolic acid content of 0- to 2.5-cm core samples from wheat-no till systems was significantly higher than those from all other cropping systems. Individual phenolic acids and total phenolic acid content of soils were highly correlated. The last two observations were confirmed by principal component analysis. The concentrations were confirmed by principal component analysis, tions of individual phenolic acids extracted from soil samples were related to soil pH, water content of soil samples, total soil carbon, and total soil nitrogen. Indirect evidence suggested that phenolic acids recovered by the water-autoclave procedure used came primarily from bound forms in the soil samples.The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of products named, nor criticism of similar ones not mentioned.  相似文献   

13.
An aqueous extract ofRuta graveolens L. (250 g/liter) was tested for its allelopathic activity in vitro on radish germination and radicle growth in light and darkness. It caused a delay in the onset and a decrease in the rate of germination (40%) in the light. The photoinhibition of germination was accompanied by an inhibition of water uptake into the seed. Furthermore, the inhibition of radicle growth was slightly higher in the light than in darkness. Three potential allelochemicals, biologically active in the light, were isolated from the extract: 5-methoxypsoralen (5-MOP), 8-methoxypsoralen (8-MOP), and 4-hydroxy-coumarin at concentrations of 10–4 M, 2×10–4 M, and 0.4 ×10–5 M respectively. At a concentration of 2×10–4 M, 5-MOP was the most potent inhibitor, decreasing radish germination to 32% and radicle growth to 17% with respect to control. Microscopic observations of radish seeds treated with 5-MOP suggest that this substance changes the swelling of the seed coat and aleurone layer, which precedes radicle protrusion.  相似文献   

14.
Regeneration failure ofPicea abies in a subalpine bilberry-spruce forest was studied in relation to phenolic compounds, their occurrence and toxicity. Germination bioassays with natural leachates of bilberry (Vaccinium myrtillus) and spruce showed negative effects on root elongation of spruce seedlings. Growth bioassays on litter and humus demonstrated inhibitory effects of these organic layers.p-Hydroxyacetophenone, a spruce-specific metabolite, was isolated in spruce throughfall (10–6 M), in water extracts of litter (between 1 and 8 µg/g dry wt) and organic layer (less than 1 µg/g dry wt) in addition to tannins and several common phenolic acids. Potential relationships between vegetation cover and phenolic pattern of the soil are discussed, since organic layers under bilberry heath exhibited higher amounts of phenolic acids and tannins than those under spruce.p-Hydroxyacetophenone and caffeic acid reduced, even at 5 × 10–5 M, spruce seedling growth, especially root development, with additive effects for these two monomers. Autotoxicity involving spruce trees and allelopathy of understory species, mediated byp-hydroxy-acetophenone and other phenolic compounds, including tannins, deserves further attention in regeneration studies.  相似文献   

15.
The aqueous extracts of leaves, stems, and roots ofCoffea arabica significantly inhibited the seed germination and radicle growth of rye grass, lettuce, and fescue. When the extracts were diluted to 1% solution, significant suppression of lettuce growth was still found and was particularly pronounced in the extract of young seedlings. The paper chromato-gram of the ether fraction of an aqueous extract of coffee leaves was bioassayed with lettuce seeds and revealed a remarkable inhibition throughout the chromatogram except for the segment ofR f 0.00–0.12. Paper without spotting extract was used as a standard. The phytotoxins present in coffee tissue were identified by paper and thin-layer chro-matography and mass spectrometry. The compounds include caffeine, theobromine, theophylline, paraxanthine, scopoletin, and chlorogenic, ferulic,p-coumaric,p-hydroxybenzoic, caffeic, and vanillic acids. All compounds except caffeic acid exhibited significant phytotoxicity to lettuce growth at a concentration of 100 ppm.Paper no. 222 of the Scientific Journal Series, Institute of Botany, Academia Sinica, Taiwan, and Journal Article 3582 of the Agricultural Experiment Station, Oklahoma State University, Stillwater, Oklahoma. The abstract was published in the Proceedings of 63rd Annual Meeting of American Societies for Experimental Biology, held on April 1–10, 1979, Dallas, Texas.  相似文献   

16.
Cucumber seedlings were grown in 5 mM MES [2-(N-morpholino)ethanesulfonic acid] -buffered nutrient solutions adjusted to a pH of 5.5, 6.25, or 7.0. Nutrient solutions were changed on alternate days. Seedlings were treated for a two-day period with various concentrations (0–1 mM) of ferulic acid,p-coumaric acid, or mixtures of these phenolic acids when 16 days old. Leaf growth, dry weight, and water utilization of the seedlings; pH of the solutions; and disappearance of the phenolic acids from nutrient solutions were monitored. Leaf area expansion of cucumber seedlings was inhibited by both ferulic andp-coumaric acid, and the magnitude of these inhibitions was influenced by concentration and pH. Inhibition of leaf area expansion was greater at pH 5.5 and nominal at pH 7.O. Ferulic acid was more inhibitory thanp-coumaric acid. The effect of pH on growth was best described by data for mean relative rates of leaf expansion. For example, the mean relative rates of leaf expansion by both acids at 0.5 mM for the 16- to 18-day growth period (treatment period) were reduced by 45, 31, and 8% for the pH 5.5, 6.25, and 7.0 treatments, respectively. The dry weight of seedlings at harvest (day 22) was significantly reduced for seedlings grown in the pH 5.5 and 6.25 treatments, but not for the pH 7.0 treatment. There was, however, one exception; the dry weight of seedlings treated withp-coumaric acid solutions adjusted to a pH of 5.5 was not significantly reduced. Water utilization by the seedlings was reduced by both ferulic andp-coumaric acid. Again, the impact of ferulic acid was greater thanp-coumaric acid. The effect of ferulic acid on water utlization decreased with increasing pH of the nutrient solution. The pH effects were not so consistent forp-coumaric acid. The effects of equimolar mixtures of the two phenolic acids were additive for all variables measured. There was a linear correlation between mean relative rates of leaf expansion and water utilization.Paper No. 9693 of the Journal Series of the North Carolina Agricultural Research Sevice, Raleigh, North Carolina. Mention of a trademark or a propriety product does not constitute a guarantee or warranty of the product by the Agricultural Research Service and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

17.
The phytotoxicity produced during decomposition of rice straw in soil was evaluated under both constant and changing temperature conditions. Bioassay tests showed that the aqueous extract from a soilstraw mixture after incubation at constant temperature was more than twice as phytotoxic as the extract from soil incubated alone. The phytotoxicity was highest at 20–25 ° C. Temperatures above 25 ° C enhanced rice straw decomposition and also degraded the phytotoxic substances more rapidly. After incubation of soil mixtures under changing temperature regimes in a phytotron, the phytotoxicy of the soil aqueous extracts increased in the following order: soil alone < soil + fertilizer < soil + straw < soil + straw + fertilizer. Growth inhibition of lettuce or rice seedlings was also at the highest at the temperature range of 25–30 ° C irrespective of the direction of temperature changes from either low to high or vice versa. Five phytotoxic phenolics,p-hydroxybenzoic, vanillic,p-coumaric, syringic, and ferulic acids, were obtained from both the aqueous extract and residue of the incubated soil samples and were quantitatively estimated by chromatography. The amount of phytotoxins found in various soil mixtures followed the same increasing order as that found by the seed bioassay test. Although no definite distribution pattern of the phenolics in the incubated soil samples can be attributed to temperature variations, the amount of the phenolics was likely higher in the samples incubated at 25 ° C than at either 15 ° C or 35 ° C. The quantity of toxins released during decomposition of rice straw in soil reached highest levels six weeks after incubation and gradually disappeared after twelve weeks.Paper No. 242 of the Scientific Journal Series of the Institute of Botany, Academia Sinica, Taipei, Taiwan, Republic of China. This study was supported by a project under the R.O.C.-U.S.A. Cooperative Science Program.  相似文献   

18.
The aim of this investigation was to determine the impact ofp-hydroxyacetophenone,p-hydroxybenzoic acid, catechol, and protocatechuic acid on respiration of two spruce mycorrhizal fungi:Laccaria laccata andCenococcum graniforme. These phenols are produced byVaccinium myrtillus,Athyrium filixfemina, andPicea abies, predominant species of spruce forests in the Alps, and they are also present in humic solutions at 10–10 M or 10–5 M. Respiration of the two fungi was inhibited by the four phenolic acids, even at concentrations ranging from 10–5 M to 10–7 M. These data show phenolic acids from humic solutions have biological activity at extremely low concentrations, suggesting a contribution ofV. myrtillus, A. filixfemina, andP. abies to allelopathic inhibition of mycorrhizal fungi.  相似文献   

19.
A herbicidal compound was isolated from extracts ofMatthiola incana and identified as sulforaphene (4-methylsulfinyl-3-butenyl isothiocyanate). The ED50 of this compound against velvetleaf seedlings was approximately 2×10–4 M. Glucoraphenin, the glucosinolate that is the natural precursor of sulforaphene, was less phytotoxic, with an ED50 of near 6×10–3M.The mention of firm name or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

20.
Larvae of the wheat midge, Sitodiplosis mosellana (Géhin) feed on the surface of wheat seeds for about 10 days beginning when pollination occurs. A few wheats have a high level of antibiotic resistance to the larvae, which suppresses their growth and development. Nearly all larvae develop successfully on susceptible wheats. Analysis by HPLC of seed extracts produced by alkaline hydrolysis revealed rapid changes in the levels of p-coumaric and ferulic acids during early seed development. Seed infested by wheat midge larvae showed induced changes in the dynamics of these phenolic acids. The most resistant wheats had a higher constitutive level and a more rapid induction of ferulic acid than susceptible wheats. Levels of ferulic acid exceeding 0.35 g/g fresh weight were associated with a high mortality of newly hatched larvae. In one wheat line, resistance also was associated with induced production of p-coumaric acid. The induction of ferulic acid was similar in wheat from the laboratory and field, except in one resistant wheat that produced higher levels in the field. In ripe seeds, resistant and susceptible wheats had similar levels of phenolic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号