首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is based on modifications implemented in the protection and grounding systems of a large paper mill and describes selective ground fault protection for a 13.8-kV system with multiple bus-connected generators, synchronous bus ties, and utility interconnections. The ground fault current in the system is reduced from the existing 3400 A to 500 A, and a hybrid grounding system is implemented for each of the generators. As the ground fault currents are reduced to limit the fault damage, the sensitivity and selectivity of the ground fault protection become important. Directional ground fault relays with coordinating pickup settings are applied to achieve this objective. The new platform for directional elements (numerical relays) drives its performance from sequence impedance measurements  相似文献   

2.
Industrial power distribution system substation transformers and generator step-up transformers in power stations often use resistance-grounded wye secondary windings for medium-voltage power distribution. The purpose of this is to limit damage due to ground-fault currents, while providing sufficient fault current for the operation of ground-fault relaying. The relaying used to protect against ground faults in the system may not provide sufficient protection of the transformer winding against internal faults because the backup ground overcurrent relay in the transformer neutral-to-ground connection must be set to coordinate with downstream relays. In order to protect the winding itself, special relays are utilized. Ground differential protection can be provided by digital overcurrent relays in conjunction with auxiliary ratio matching transformers. Ground differential protection can also be provided in multifunction digital relays. Transformer protection relays may include this feature with one of the schemes used with component relays. If a feeder-protection relay is used on the secondary, in some cases, this may have a ground-directional feature that can be utilized for ground-differential protection  相似文献   

3.
The reliability of an industrial power system can be increased by proper selection and application of protective relays. This is especially true for the medium-voltage distribution system. An effective protective relay application scheme is presented that uses devices widely used in present pulp and paper mill power distribution systems. The effective use of summation overcurrent and directional overcurrent relays for multisource generator buses makes it possible for the power system protective engineer to achieve good selective operation between source buses for both phase and ground fault current conditions. This greatly enhances the reliability of the power distribution system  相似文献   

4.
Over-current protection is principally intended to counteract excessive current in power systems. In distribution systems in Malaysia, non-directional over-current protection is adopted because of the radial nature of the power system used. Relay typically used in distribution network are designed to cater for current flow in one direction, i.e., from transmission network to load. However, with the forecasted increase in generation from renewable sources, it is important that adequate codes are in place with regards to their integration to sub-transmission/distribution network. Distribution network dynamically changes from “passive” to “active” network. With distributed generation connected to distribution network, power flows bi-directionally. Hence, directional over-current protection is adopted along the line between the transmission grid and the distributed generation. The bi-directional flow of power also complicates the earth fault protection. This is due to the presence of the distributed generation that will cause the line near the delta side of the transformer to be still energized after the operation of earth fault relay during single-phase-to-ground-fault. This paper investigates the directional over-current and earth fault protections used to protect the microgrid (biomass generator) in Malaysia. In this study, under-voltage relays are adopted at the delta side of the transformer to fully clear the single-line-to-ground fault, which cannot be cleared by earth fault relay. Three-phase-balanced fault and single-line-to-ground-fault at all possible locations in the network have been simulated. Simulation shows good coordination and discrimination between over-current relays.  相似文献   

5.
Multi-function multi-phase static overcurrent relays, using digital technology available today, provide basic time, (51) (51G) (51N) and instantaneous (50) (50G) (50N) three phase and ground overcurrent protection, and may offer some or all of the following additional functions: undervoltage (27); overvoltage (59); reverse phase sequence (47); negative phase sequence voltage (47N); directional overcurrent (67) (67N); frequency (81O/U); reverse interlocking trip coil monitoring; and battery monitoring. This article describes two applications that use some of the additional functions in such a relay: reverse interlocking, also using the directional overcurrent (67) function; and ground fault detection for systems utilizing high resistance grounding. The first application was installed on a 4160 volt power system which was supplied by two 5000 kVA transformers  相似文献   

6.
选相及方向元件在风电接入系统中的适应性分析   总被引:1,自引:2,他引:1  
对传统选相及方向元件在风电接入系统中的适应性进行了研究分析。传统选相和方向元件均基于故障序分量网络分析,故障期间风电系统正负序阻抗相差较大且幅值远大于常规电网的特点使得风电侧正负序电流分支系数具有较大偏差,从而造成了基于正负序电流分支系数近似相等的传统选相和方向元件并不适用于风电接入系统。PSCAD建模仿真和现场故障录波数据验证了适应性分析结论。最后基于适应性分析结论给出了风电接入系统的选相和方向元件建议。  相似文献   

7.
方向高频保护高压和超高压输出电线路的主要保护方式,其动作性能对电力系统的安全运行影响甚大。  相似文献   

8.
This paper presents the design and construction of overcurrent and directional overcurrent relays with ground fault protection for the protection of three-phase subtransmission and distribution systems, using a 16-bit microprocessor, the Intel 8096BH. The relay obtains the system currents at the rate of 12 samples per cycle and estimates the fundamental-frequency components of the current signals using discrete Fourier transform techniques. In the case of the directional overcurrent relay, the direction of the current flow is identified to determine whether the fault current is flowing into its protected zone. For this purpose, several internally stored voltage vectors, corresponding to the different directional element settings, are synchronized accurately with the system voltage and used to determine the direction of the power flow. Facilities to change relay characteristics, the time dial and plug settings are provided. The user can also set the relay as an instantaneous overcurrent relay. The desired operating characteristics are achieved by direct curve data storage in the memory.  相似文献   

9.
风力发电系统短路故障特征分析及对保护的影响   总被引:6,自引:1,他引:6       下载免费PDF全文
为了进一步掌握风力发电系统短路故障特征并分析其对继电保护的影响,建立了双馈和直驱风电系统电磁暂态模型。通过电磁暂态仿真研究了风电系统短路电流及系统正负序阻抗的特征,得出了风电系统提供短路电流能力较常规电源弱和风电系统正负序阻抗不一致且随时间波动的结论。研究了常用输电线路继电保护原理对风力发电系统的适应性,得出了输电线路距离保护和选相元件受风力发电系统故障特征影响较大,可能发生不正确动作的结论。利用现场录波数据验证了故障特征及保护适应行分析的正确性,相关结论对继电保护的配置具有一定的借鉴意义。  相似文献   

10.
Overcurrent relays are widely used as main protection in sub-transmission and distribution systems. In mesh and multi-source networks, application of directional relay is unavoidable. Traditional directional overcurrent relays use the reference voltage phasor as the polarizing quantity to estimate the direction of the fault. Traditional direction distinguishing scheme is unreliable in the case of close-in faults. In this paper, a novel algorithm for directional overcurrent relay is proposed. The new algorithm uses only current signals for determining the fault direction. It uses superimposed component of the current signal and does not require phasor estimation. This new algorithm uses pre-fault current signal as the polarizing quantity. The proposed method is tested on simple power system in different situations. The results show it leads to fast and reliable directional protection.  相似文献   

11.
输电线路存在弱电源系统,线路发生区内故障,由于弱电源侧系统不能提供足够的短路电流而不能启动保护,导致两侧保护不能快速跳闸甚至拒动。本分析了弱电源系统输电线路故障特征,提出弱馈输电线路保护配置宜采用纵联方向(距离)、光纤电流差动保护,尤其光纤电流差动保护利用两侧电压信息能彻底解决弱馈线路存在的问题。弱电源侧选相问题,光纤电流差动保护能很好解决,纵联方向(距离)保护需采用弱馈识别的逻辑,在弱电源侧选用突变量电压及稳态量序分量电压选相,是保证重合闸合闸成功的关键。  相似文献   

12.
Heavy fault currents flow in the event of fault at the loads connected in distribution system. To protect these loads, circuit breakers and relays are required at appropriate places with proper coordination between them. This research paper focuses on finding optimum relay setting required for minimum time to interrupt power supply to avoid miscoordination in operation of relays and also investigates effect on time multiplier settings (TMS) of directional overcurrent relays in a system with combined overhead lines-underground cables. Linear programming problem (LPP) approach is used for optimization. It is interesting to know the quantitative variations in TMS as the underground cables have different characteristics than overhead lines.  相似文献   

13.
极化电流行波方向继电器   总被引:4,自引:2,他引:2  
电容式电压互感器不能有效传变宽频带的电压故障行波信号,使得传统利用电压故障行波构成行波方向继电器的保护算法不能应用于实际电力系统保护中,为此提出了一种极化电流行波方向继电器。该方向继电器以电压故障行波中工频分量初始极性与电流故障初始行波的波头极性相比较判定故障方向,解决了传统行波方向继电器因不能有效获取宽频带电压故障行...  相似文献   

14.
TCSC动态基频阻抗对故障分量保护的影响   总被引:6,自引:4,他引:2  
分析了TCSC 对故障分量保护包括负(零)序功率方向保护、工频故障分量距离保护及工频 故障分量方向保护的影响,认为:与常规串联补偿线路上的保护相比,在TCSC线路上故障分 量保护的性能不会降低。  相似文献   

15.
Relay coordination is crucial in electrical power systems to protect against malfunctions and damage caused by unexpected events like short circuits. To address the challenge associated with the reverse direction of fault current, dual-setting (DS) directional over-current relays have evolved but failed to provide proper coordination during changes of load, generation, and network. In the meantime, with the increasing number of DS relays, the total relay operating time tends to saturate. Therefore, this paper proposes a protection scheme based on the optimal deployment of conventional and dual-setting rate of change of voltage (DS-ROCOV) relays in distribution systems. This holds true for varying network topologies and is unaffected by variations in load and generation. The objective of the proposed scheme is to ensure reliable and efficient protection against faults in distribution systems by minimizing the overall operating time with the optimal number of DS-ROCOV relays. The proposed protection scheme''s performance is evaluated for different coordination time interval values as well as in different microgrid scenarios. This paper outlines the design and implementation of the proposed protection scheme which is validated on the modified IEEE 14-bus system using simulations in Matlab/Simulink.  相似文献   

16.
为提高继电保护装置的光纤通道故障监测能力和定位能力,尝试将IEEE-C37.94光接口标准应用到继电保护装置,并研究该标准应用到继电保护装置中的优势及局限性。通过解读IEEE-C37.94光接口标准帧格式的协议,结合国内继电保护装置的光纤传输要求,验证该标准可以允许不同厂家的保护设备与数字复接接口设备在光接口处能够互通,并且对不同链路的通信故障能够有效定位。但也存在传输带宽不高问题,宽松的校验措施也给其应用于继电保护设备带来了一些局限性。实际应用情况表明,IEEE-C37.94标准应用于继电保护设备是可行的。  相似文献   

17.
研究了以“距离测量电压”为基础构成的两种距离继电器:方向距离继电器和多相补偿距离继电器。通过分析当保护安装处背后发生单相和两相接地故障时其非故障相元件的动作行为,指出了以距离测量电压为基础构成的距离元件存在的问题。解决的办法有两种:在满足一定条件时用零序功率反方向元件闭锁可能误动的元件;对于微机保护可采取先选相后测量的方法。  相似文献   

18.
The priority to reactive power contribution from the Voltage Source Converter (VSC) based High Voltage Direct Current (HVDC) connection to support the grid during faults as suggested by the modern Network Code (NC) for HVDC affects the distance protection of transmission lines. Moreover, suppressing the negative sequence current during an unbalanced condition also interferes with the proper operation of the distance relays. This is because the current contribution from the converter is limited in magnitude and modified in the waveform in order to protect the power electronic devices during the fault in comparison to the synchronous generator fault current characteristics. This paper discusses the cause as well as the severity of the problems faced by the distance protection of transmission lines connected to the VSC based HVDC system by analyzing the apparent impedance analytically and in the simulation. The response of the relay to balanced and unbalanced faults lying on transmission lines is investigated. It is shown that the VSC limited reactive support and suppressed negative sequence current affect fault detection, forcing the relay to malfunction. The results of this paper can be used as a reference for understanding the effects of VSC-HVDC system on the operation of the distance protection during faults.  相似文献   

19.
背靠背柔性环网控制装置的应用使配电网由单端电源供电的辐射状网络变为多端电源供电网络,三段式电流保护无法判断故障方向。为了既保证配电网保护动作可靠性又保留三段式电流保护,需要为保护安装方向元件。文中通过研究背靠背柔性环网控制装置接入的交流配电网发生不同位置相间故障时序电流间的相位规律,提出了基于流过保护的负序电流和同一母线上无源支路正序电流间相位关系的故障方向判别元件,并给出了正反方向故障时方向元件的动作区间。该方向元件适用于由传统电源、采用负序电流抑制的柔性环网控制装置或分布式电源构成的且母线含无源支路的多端供电网络。该元件受过渡电阻影响小,无需安装电压互感器,在三相对称故障时仍可保证保护的正确动作,不存在传统功率方向元件出口三相故障时的死区问题。经PSCAD仿真验证了该方向元件在系统不同位置发生各种相间故障时的正确性和有效性。  相似文献   

20.
This work presents a detailed investigation on the performance characteristics of vector surge relays used to detect islanding of distributed synchronous generators. A detection time versus active power imbalance curve is proposed to evaluate the relay performance. Computer simulations are used to obtain the performance curves. The concept of critical active power imbalance is introduced based on these curves. Main factors affecting the performance of the relays are analyzed. The factors investigated are voltage-dependent loads, load power factor, inertia constant of the generator, generator excitation system control mode, feeder length and R/X ratio as well as multi-distributed generators. The results are a useful guideline to evaluate the effectiveness of anti-island schemes based on vector surge relays for distributed generation applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号