首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在Gleeb-3500型热模拟试验机上对铸态GCr15SiMn轴承钢进行热压缩试验,研究了变形温度(1 223~1 423K)和应变速率(0.1~10.0s~(-1))对流变应力的影响,观察了显微组织;采用基于TEGART和SELLARS等提出的Arrhenius方程,通过试验数据的拟合建立了试验钢的流变应力本构方程,并进行了验证。结果表明:在试验条件下变形时,试验钢的流变曲线均呈现出动态再结晶软化特征,提高变形温度或降低应变速率均可降低其流变应力;在应变速率1.0s~(-1)条件下,升高变形温度会促进试验钢的动态再结晶,同时也使晶粒长大粗化;在变形温度1 423K、应变速率0.1~1.0s~(-1)条件下,应变速率越大,动态再结晶晶粒越细;由建立的流变应力本构方程预测得到的峰值应力与试验结果的平均相对误差为0.393%,说明本构方程较准确。  相似文献   

2.
采用Gleeble-3500型热力模拟试验机对新型CHDG-A06奥氏体不锈钢进行单道次压缩试验,研究了其在变形温度为950~1 100℃、应变速率为0.01~1s~(-1)条件下的热变形行为,并对变形后的显微组织进行了观察;根据试验钢的应力-应变曲线,通过线性回归建立了它的高温热变形本构模型。结果表明:在热变形过程中,变形温度和应变速率对流变应力的影响显著,流变应力随着变形温度的升高或应变速率的降低而降低;动态再结晶易发生在较低应变速率(≤0.1s~(-1))或较高变形温度(≥1 050℃)下;利用峰值应力求得该钢的双曲线正弦本构方程,并得到其热变形激活能为453.674 4kJ·mol~(-1)。  相似文献   

3.
采用Gleeble 3500型热模拟试验机对HG700汽车大梁钢进行单道次压缩试验,研究了其在变形温度950~1 150℃和应变速率0.01~5.00s~(-1)条件下的流变应力行为;根据真应力-真应变曲线,采用线性回归方法建立该钢的流变应力本构模型,并进行了试验验证。结果表明:在高应变速率(1.00,5.00s~(-1))下,HG700汽车大梁钢的动态软化行为以动态回复为主,而在低应变速率(0.01,0.10s~(-1))下,HG700汽车大梁钢发生了明显的动态再结晶;变形温度的升高及应变速率的降低均会促进流变应力的降低,且会促进应力更早达到峰值;由构建的以变形温度、应变速率、真应变为变量的流变应力本构模型得到的预测结果与试验结果吻合良好,该模型可准确地预测HG700汽车大梁钢的流变应力。  相似文献   

4.
采用Gleeble 3800型热模拟试验机测定了含磷高强无间隙原子钢(IF钢)在变形温度为950,850 ℃,单道压缩变形量为50%,变形速率为0.01,0.1,1,10 s-1时的应力应变曲线,对其变形行为进行了分析.结果表明:应变速率为10 s-1,变形量为50%时,应力-应变曲线仅为动态回复型,不因温度的变化而改变类型;当变形温度为950 ℃时,变形速率越高,铁素体晶粒越大;而当变形温度为850℃时,这种差别比较小.说明在变形速率不太高的情况下,变形温度是影响奥氏体或铁素体晶粒尺寸的主要因素.  相似文献   

5.
采用Gleeble-3500型热模拟试验机对40CrNiMo钢进行了单道次热压缩试验,得到了其在应变速率0.1~50s~(-1)、变形温度800~1 100℃下的应力-应变曲线,观察了变形后的显微组织并分析了热变形特征;建立了该钢的变形抗力模型并进行了试验验证。结果表明:较高的变形温度或较低的应变速率更有利于40CrNiMo钢的完全动态再结晶;变形温度为800℃时,应变速率增大使动态再结晶晶粒增多;应变速率为10s~(-1)条件下,当变形温度由800℃升至900℃时,动态再结晶晶粒增多,变形温度为1 000℃时,40CrNiMo钢发生了完全动态再结晶,变形温度为1 100℃时,动态再结晶晶粒长大;计算得到40CrNiMo钢的动态再结晶激活能为322.53kJ·mol~(-1);由周纪华-管克智模型计算得到的变形抗力与试验值的平均相对误差为4.82%,模拟精度较高。  相似文献   

6.
利用Gleeble热力模拟试验机研究了304奥氏体不锈钢在变形温度950~1 150℃、应变速率0.05~1 s-1条件下的热压缩行为,根据真应力-真应变曲线,基于Arrhenius模型构建其在高温下的本构方程,并建立热加工图;基于试验数据建立动态再结晶模型,采用Deform软件对该钢的再结晶行为进行模拟,并进行试验验证。结果表明:随着应变速率的增大或变形温度的降低,不锈钢的流变应力增大;在变形温度1 080~1 120℃、应变速率0.05~0.2 s-1和变形温度1 120~1 150℃、应变速率0.5~1 s-1下,该钢具有良好的热加工性能;模拟得到在变形温度1 000℃、应变速率0.05 s-1和变形温度1 100℃、应变速率0.05 s-1下,试样心部再结晶晶粒体积分数和尺寸与试验结果间的相对误差小于7.62%,验证动态再结晶模型的准确性。  相似文献   

7.
采用热模拟方法研究了18CrNiMo7-6齿轮钢在变形温度900~1 150℃、应变速率0.01~5 s-1条件下的热压缩变形行为;建立了基于Arrhenius模型的全应变本构方程,采用该方程对流变应力曲线进行预测;根据动态材料模型绘制热加工图,并结合热加工图系统地研究显微组织演变特征。结果表明:试验钢的峰值应力随应变速率的增加或变形温度的降低而增大,动态回复和动态再结晶是热变形过程中的主要软化机制;采用建立的全应变本构方程预测得到流变应力曲线与试验结果基本吻合,预测真应力与试验结果的相对误差小于4.715%,说明该模型可以精确地模拟18CrNiMo7-6齿轮钢的热压缩变形行为。试验钢的适合热加工工艺参数为变形温度1 050~1 150℃、应变速率0.1~1 s-1,此时组织为均匀细小的再结晶晶粒,晶粒尺寸在5~15μm。随着变形温度的升高或应变速率的降低,原始奥氏体晶粒不断被动态再结晶晶粒取代,且动态再结晶程度和再结晶晶粒尺寸增大。  相似文献   

8.
采用Gleeble-3810型热模拟试验机在变形温度为8501 150℃、应变速率为0.01{50 s~(-1)的条件下对35CrMo钢铸坯进行了变形量为60%的热压缩变形试验,结合真应力-真应变曲线特征,研究了应变速率和变形温度对其压缩后显微组织的影响。结果表明:在不同条件下压缩变形后,试验钢的显微组织均具有动态再结晶特征;同一应变速率下,随着变形温度的升高,压缩后的动态再结晶晶粒逐渐变大;同一变形温度下,随应变速率的增大,动态再结晶晶粒逐渐变小;热压缩变形后,试验钢不同位置处的晶粒尺寸不同,中心区域大变形区的晶粒最为细小,随着距中心区域垂直距离和水平距离的增大,晶粒尺寸逐渐变大。  相似文献   

9.
采用Gleeble-3500热模拟机对Fe-1.3C-5Cr-0.4Mo-0.4V超高碳钢在温度为950~1 150℃,变速率为0.01~5s-1,变形量为40%条件下进行热压缩模拟试验。研究Fe-1.3C-5Cr-0.4Mo-0.4V超高碳钢在热压缩过程中变形温度和应变速率对超高碳钢真应力-应变曲线,以及对再结晶组织演变的影响规律,并构建出超高碳钢本构方程。结果表明,在升高变形温度和降低应变速率的情况下,超高碳钢更容易发生再结晶。在应变速率一定时,流变应力随着温度的升高而降低;在温度一定时,流变应力随应变速率的减小而降低。通过流变应力曲线获得本构方程,能够准确地描述超高碳钢的流变行为,同时获得超高碳钢的激活能为Q=729.37kJ/mol。在微观组织方面,变形温度为1 050℃时,应变速率由0.01s~(-1)增加到5s~(-1)时,晶粒尺寸降幅5.21μm。因此,超高碳钢应该在温度为1 000~1 050℃和应变速率在1~5s~(-1)下进行热变形。  相似文献   

10.
采用热模拟试验机对60Si2CrVAT高强度弹簧钢在不同温度(900,950,1 050,1 150℃)和应变速率下(0.1,1,5,10s~(-1))进行热压缩变形,研究了变形温度和应变速率对该钢热变形行为的影响规律;在此基础上,根据Arrhenius双曲正弦方程,建立了该钢的热压缩变形本构方程。结果表明:该钢的流变应力随着变形速率的增大而增大,随变形温度的升高而减小,动态再结晶在高变形温度和低应变速率下更容易发生;真应变为0.2时的变形激活能为372kJ·mol~(-1),流变应力的计算值与试验值之间的平均相对误差为4.89%,吻合得较好。  相似文献   

11.
通过热压缩实验,分析不同变形条件(温度范围1 200~700℃,变形速率范围0.001~1 s~(-1))对晶粒尺寸的影响。得到的试验结果表明,变形温度为1 100℃、应变速率为1 s~(-1)时,再结晶细化晶粒的作用最好,晶粒度可以达到5级。通过选取3种不同变形程度的试样进行860℃退火热处理,发现均可以获得细小均匀的晶粒,晶粒度均达到8级。而随着奥氏体化温度的提高(920℃、960℃、980℃、1 000℃)晶粒度会发生长大,在980℃以下经过奥氏体化,晶粒尺寸均大于4级,而当温度高于1 000℃以后,晶粒尺寸迅速增大,达到2级。  相似文献   

12.
采用Gleeble1500型热力试验机对Fe-1.6%Si无取向硅钢进行了热模拟试验,得到了该钢静态和动态CCT曲线以及在不同应变速率和温度下的应力-应变曲线;通过峰值应力与温度变化曲线,得到了相变开始和结束的温度区间。结果表明:随着冷却速率的增大,相变温度降低,动态CCT曲线中的奥氏体向铁素体的转变温度比静态CCT曲线中的高,1 041℃以上为奥氏体区,1 041~955℃为奥氏体和铁素体两相区,955℃以下为铁素体区;建立了该钢在奥氏体区、铁素体区以及奥氏体-铁素体两相区变形抗力的数学模型,该钢的流变应力通常随变形程度和应变速率的增加而增大。  相似文献   

13.
采用Gleeble-3500型热模拟试验机对FV520B马氏体不锈钢进行了单道次等温热压缩试验,研究了该不锈钢在变形温度为850~1 150℃和应变速率为0.005~5.000s~(-1)条件下的热变形行为,根据应力-应变曲线并基于Zener-Hollomon参数和Arrhenius双曲正弦方程,建立了该不锈钢在高温压缩时的本构方程,并对该本构方程进行了修正和试验验证。结果表明:FV520B马氏体不锈钢的流变应力随着变形温度的升高或应变速率的减小而降低;在0.005s~(-1)、1 000~1 150℃或0.050~5.000s~(-1)、1 075~1 150℃条件下,该不锈钢发生了较明显的动态再结晶;在0.005s~(-1)、850℃,5.000s~(-1)、850℃和5.000s~(-1)、925℃条件下,由建立的本构方程计算得到的流变应力与试验值存在较大的误差;对本构方程进行修正之后,流变应力的预测值与试验值的相关系数为0.997 88,平均相对误差为2.225%,修正后的本构方程可以准确地预测该不锈钢的热变形流变应力。  相似文献   

14.
采用金相法测定了在不同温度(950~1 270℃)下固溶不同时间(30~150min)后高铌低碳贝氏体钢的奥氏体晶粒尺寸,研究了其奥氏体晶粒的长大行为;计算了试验钢中铌的固溶含量,建立了奥氏体晶粒长大数学模型并进行了试验验证。结果表明:在1 220~1 270℃温度区间内试验钢奥氏体晶粒尺寸增加值最大,其次为1 100~1 150℃区间的;由于1 000℃时试验钢中合金渗碳体的快速溶解,使得950~1 000℃区间内的晶粒尺寸增加值大于1 000~1 050℃区间的;计算得到1 150℃时的固溶铌质量分数达到0.088%,此时绝大部分NbC已经溶解,导致1 100~1 150℃温度区间内奥氏体晶粒的快速长大;在950~1 270℃范围内,试验钢的奥氏体晶粒长大激活能为154.4kJ·mol~(-1),由晶粒长大模型计算得到的奥氏体晶粒尺寸与实测值较吻合。  相似文献   

15.
在变形温度950~1050℃、应变速率0.01~5 s-1下对F45MnVS非调质钢进行不同变形量(5%~56%)的单道次压缩试验,研究了变形温度、应变速率和变形量对该钢变形行为和晶粒尺寸的影响;基于试验数据建立动态再结晶临界应变模型和平均晶粒尺寸模型,嵌入Deform软件中模拟了试验钢的动态再结晶平均晶粒尺寸.结果表明:随着变形量或应变速率的增大,或者变形温度的降低,试验钢的平均晶粒尺寸减小;较高应变速率下加工软化导致的应力下降不明显,动态再结晶程度较小,较低应变速率下则相反;模拟得到的再结晶平均晶粒尺寸与试验结果较吻合,且平均晶粒尺寸随变形温度、应变速率和变形量的变化规律与试验结果相符.  相似文献   

16.
亚共晶铝硅合金因具有轻质、耐腐蚀、高的比强度和优异力学性能等优点,被广泛应用于航空、航天、军事及汽车工业领域。利用喷射沉积技术制备亚共晶Al-7Si-0.5Cu-0.5Mg合金,通过高温压缩试验结合微观组织分析,研究温度和应变速率对沉积态亚共晶铝硅合金热变形行为的影响规律,最终确定沉积态合金优化的致密化工艺参数。研究发现,采用双曲线正弦函数建立的沉积态合金的本构方程,能够准确描述沉积态合金的流变行为。喷射沉积合金主要由Al相、Si相、Al_2Cu相和Mg_2Si相组成,硅相平均尺寸为8.5μm。当温度为300℃,随着应变速率由1s~(-1)减小至0.001s~(-1),合金的压缩应力由112.19 MPa减小至61.26 MPa。在应变速率为0.001s~(-1)下,随着变形温度由300℃升高至450℃,合金压缩流变应力由61.26 MPa减小至21.35 MPa。合金在低应变速率(0.001s~(-1))和相对较高的温度(450℃)下变形时,由于相对充足的变形时间和铝基体较高的软化程度,导致组织中硅相尺寸增大,不利于合金性能的提高。沉积态合金最佳的变形参数为变形温度400℃,应变速率0.01s~(-1)。  相似文献   

17.
在变形温度600~950℃、应变速率1s~(-1)的条件下对碳质量分数分别为0.26%,0.33%,0.42%的含钒微合金钢进行了应力松弛试验,得到了其应力松弛曲线和V(C,N)的析出动力学(PTT)曲线,结合显微组织分析了V(C,N)析出规律。结果表明:V(C,N)的析出会阻碍试验钢中奥氏体再结晶,减缓应力的下降;奥氏体中V(C,N)的PTT曲线呈S形,在900℃时V(C,N)析出最快;试验钢中碳含量的增加加快了V(C,N)的析出速率,但不影响其最快析出温度,含碳量最高的试验钢具有最短的开始析出时间,为7.5s。  相似文献   

18.
采用THEI洲ECMASTOR-Z热/力模拟试验机研究了超低碳钢在铁素体区轧制过程的形变特征和流变应力,采用双段压缩试验方法研究了不同变形温度、道次间隔时间和变形程度对钢的流变应力和组织的影响。结果表明:采用铁素体轧制工艺,在800-900℃时流变应力与奥氏体轧制相近,第七道次轧制的累积应变是设定应变的5.08倍;与常规轧制相比细化了晶粒尺寸。  相似文献   

19.
采用Gleeble-3500型热模拟机对7075/6009铝合金复合材料在变形温度为300~500℃、应变速率为0.001~1s~(-1)条件下的热压缩变形进行了研究,并得出了本构方程。结果表明:应变速率和变形温度对该复合材料的流变应力有显著影响,流变应力随变形温度的升高而降低,随应变速率的提高而增大;可采用Zener-Hollomon参数的双曲正弦函数来描述该复合材料热压缩变形的峰值流变应力;热压缩变形本构方程中的结构因子A、应力水平参数α和应力指数n分别为1.23×10~(11)s~(-1),0.021和6.449,热变形激活能Q为166.89 kJ·mol~(-1)。  相似文献   

20.
金贺荣  段昌新  戴超 《机械强度》2020,42(2):426-430
为研究热加工过程中变形参数对EH40船板钢流变应力的影响规律,利用Gleeble—3800实验机对试样进行热模拟压缩实验,获得了EH40船板钢在应变率为0. 1 s~(-1)~10 s~(-1)和变形温度为900℃~1 200℃条件下的真应力-应变曲线,分析曲线得出:变形温度和应变速率均对EH40船板钢的动态再结晶和动态回复产生重要影响,升高变形温度或降低应变速率,均有利于变形过程中动态再结晶的发生,有助于材料的晶粒细化。采用包含Zene-Hollomon参数的双曲正弦模型,获得了该材料的热变形方程、热变形激活能、Z参数数学模型。经验证,所建立的本构关系计算值与实验值平均相对误差为3. 13%,能够很好地反应EH40船板钢的实际热变形行为特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号