首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
参照4Cr5Mo2V热作模具钢的化学成分,制备了钒质量分数分别为0,0.55%和0.9%的试验钢,并进行了表面离子渗氮处理,研究了钒含量对渗氮后热作模具钢组织和性能的影响.结果表明:3种试验钢的基体组织均为马氏体,渗氮层主要由白亮层和扩散层组成;随着钒含量提高,试验钢基体组织明显得到细化,白亮层分布变得连续,扩散层厚度...  相似文献   

2.
冯勇  杨闯  严丽 《机械工程材料》2021,45(11):43-46,90
对TB8钛合金进行800℃间歇式真空渗氮6 h,研究了表面渗氮层的组织、硬度、耐磨性能及耐腐蚀性能.结果表明:TB8钛合金表面间歇式真空渗氮层主要由厚度60~80μm氮化物层和厚度110~130μm氮扩散区组成,表层物相包括TiN、TiN0.3、Ti2AlN及α-Ti,表层硬度为800~850 HV,由表层至心部硬度缓慢降低,心部基体的硬度为250~270 HV;在相同条件下,间歇式真空渗氮处理合金的磨损质量损失为未渗氮合金的1/12,表面形成了浅而窄的磨痕,耐磨性得到显著提高;间歇式真空渗氮处理合金在HF和HNO3混合溶液中的腐蚀速率仅为未渗氮合金的1/153,表面未见明显腐蚀坑,耐腐蚀性能得到明显提高.  相似文献   

3.
离心式压缩机齿轮的快速深层等离子渗氮   总被引:1,自引:0,他引:1  
采用快速深层等离子渗氮工艺对离心式压缩机齿轮进行表面处理。利用光学显微镜、X射线衍射仪、电子探针分析仪、努氏显微硬度计、微摩擦磨损试验机和扫描电镜对渗氮层进行分析。在510℃温度下等离子渗氮15h和20h后,渗氮层的厚度分别为341.25μm和502.33μm。渗氮层是由化合物层和扩散层两部分组成的,其中化合物层随渗氮时间的增加由ε-Fe2-3N+γ′-Fe4N双相层逐渐转变为γ′-Fe4N单相层。由于渗层中氮化物的强化作用,经过等离子渗氮处理的试样表面硬度升高,摩擦因数减小,磨损体积显著降低。渗氮层的磨损机制以粘着磨损为主。在保证芯部具有良好韧性的基础上,快速深层等离子渗氮处理能够显著提高齿轮的表面硬度,改善齿轮的耐磨损性能。  相似文献   

4.
渗氮工作气压对H13钢离子渗氮层组织及性能的影响   总被引:1,自引:0,他引:1  
采用自制的LD-650型直流等离子体增强化学气相沉积炉在不同渗氮工作气压下对H13钢进行了离子渗氮处理,研究了工作气压对该钢渗氮层组织及性能的影响。结果表明:渗氮工作气压显著影响渗氮层的厚度,随着工作气压的升高,渗氮层中化合物层厚度呈现先增加后减小的趋势,在1066Pa下达到极大值9μm;工作气压对渗氮层表面硬度影响较小;随着工作气压的升高,化合物层的ε相和γ′相均增加,在1 066 Pa时其体积分数达到最大,分别为37.1%和35.7%;在试验条件下,工作气压为1 066 Pa下得到的渗氮层性能良好。  相似文献   

5.
对2Cr13马氏体不锈钢进行450℃×6h的等离子体源渗氮处理,对比研究了渗氮前后该钢表层的显微组织、物相组成以及耐磨和耐腐蚀性能。结果表明:渗氮后不锈钢表层形成了厚约18μm,由αN、ε-Fe3N和γ′-Fe4N组成的化合物层,以及组织明显细化的氮扩散层,氮原子渗透深度达20μm;渗氮后不锈钢的表面硬度高达1 350HV,摩擦因数低于未渗氮处理的,磨损机制由未渗氮处理的黏着磨损转变为氧化磨损,耐磨性能明显高于未渗氮处理的;在质量分数3.5%NaCl溶液中,未渗氮不锈钢的阳极极化曲线仅呈现活化溶解特征,渗氮后则呈现活化溶解、自钝化和点蚀击穿特征,且自腐蚀电位提高至-104mV,耐腐蚀性能显著提高。  相似文献   

6.
以热作模具钢H13为例对其实施离子渗氮工艺进而研究其性能变化。对采用不同渗氮温度和不同渗氮保温时间进行离子渗氮处理后的H13模具钢样品进行了实验,当渗氮温度为500℃、保温时间为8 h时性能最佳,其表面硬度为1 250HV,渗氮层厚度为241μm。  相似文献   

7.
渗氮温度对3Cr13不锈钢表面离子渗氮层组织和性能的影响   总被引:1,自引:0,他引:1  
利用等离子渗氮技术,在不同温度下对3Cr13不锈钢渗氮6 h,研究了渗氮温度对渗氮层组织结构和性能的影响。结果表明:渗氮温度显著影响3Cr13不锈钢表面渗氮层的结构与性能,渗层厚度随着渗氮温度的升高而增加;渗氮温度升高促使表面相由α′N相和ε相逐渐变成CrN相及γ′相;随着渗氮温度的升高表面硬度提高,耐磨性能随之提高;而耐蚀性在低温渗氮(400℃)时比基体略有提高,之后(≥450℃)随着渗氮温度的升高呈下降趋势,且低于基体的。  相似文献   

8.
为了提高表面性能,对TC4钛合金进行低压渗氮处理。通过金相显微镜、X射线衍射(XRD)及显微硬度计分析了渗氮层的组织与硬度。结果表明,TC4钛合金经低压渗氮处理后,表面物相由Ti N、Ti2Al N、Ti3Al和α-Ti组成,渗氮温度较低时,渗氮层较薄,硬度较低,随渗氮温度升高,渗氮层厚度增加,表面硬度亦随之增加,温度为820℃时,表面硬度可达800~850 HV,硬化层深度为30μm~40μm,渗氮温度继续增加,渗氮层组织变得疏松,表面硬度开始下降。  相似文献   

9.
在723K下对GH2132铁基高温合金表面进行低温等离子体渗氮,并进行了不同温度(673,873,973K)保温5h处理,研究了保温处理前后渗氮层的截面形貌、物相组成、硬度和耐腐蚀性能。结果表明:GH2132铁基高温合金表面的渗氮层主要由氮在奥氏体中的过饱和固溶体,即膨胀奥氏体γN相组成;随加热温度的升高,渗氮层的厚度增加;当加热温度为673K时,γN相未发生分解,当加热温度为873,973K时,γN相分解生成晶格膨胀程度较低的γN相和CrN相;γN相的晶格膨胀率随着加热温度的升高而降低;随加热温度的升高,渗氮层的硬度先增大后降低,并在加热温度为873K时达到最大,约为926HV;不同温度保温5h后渗氮层的耐腐蚀性均降低。  相似文献   

10.
为了改善电镀厚铬层气密性差的现状,采用工厂现行的电镀工艺在基体表面制备不同厚度的铬层,研究了不同厚度铬层的表面内应力、硬度、晶粒大小和织构。结果表明:随着厚度的增加,铬层表面内应力呈波动性变化,且表面内应力均为拉应力;随着厚度的增加,铬层中的大尺寸晶粒增多,但平均晶粒尺寸变化不大,均为8.5μm左右;随着铬层厚度的增加,(110)晶面织构逐渐退化,(200)晶面织构逐渐增强;随着铬层厚度的增加,铬层硬度先缓慢增大,当铬层厚度由22.51μm增加到46.02μm时则迅速增大,随后又缓慢增大。  相似文献   

11.
采用等离子氮化技术对H13钢进行离子氮化,通过改变渗氮气压和温度得到不同成分和厚度的渗氮层,用光学显微镜和X射线衍射仪分析了渗层的组织及物相组成,借助球-盘磨损试验机对渗层在大气环境下与Al_2O_3球对磨时的摩擦学性能进行了研究。结果表明:渗层主要由ε-Fe_(2-3)N、γ′-Fe_4N和少量α-Fe、Fe_2O_3、Fe_3O_4相构成;渗氮温度为510℃时没有形成明显的渗层,渗氮温度为570℃、气压为200,300 Pa和渗氮温度为540℃、气压为100 Pa时渗层只有扩散层,而在其他条件下渗层由白亮层和扩散层组成;氮化后表面硬度为1100~1200 HV,较基体增加1倍左右;在温度为570℃、气压200 Pa制备渗层的摩擦因数比基体大幅度降低,磨痕宽度变窄,比磨损率明显降低,耐磨性明显改善。  相似文献   

12.
利用离子渗氮妒对H13模具钢进行了离子渗氮处理,研究了不同温度及时间对渗氮层性能的影响。结果表明,随渗氮温度的提高,表面硬度先升高后降低,渗氯层厚度逐渐增加;随保温时间的延长,表面硬度逐渐降低,硬化层厚度逐渐增加;表面残留应力随着渗氮温度的提高和保温时间的延长均呈现升高趋势。另外,生产实践表明,渗氮后,模具使用寿命明显提高。  相似文献   

13.
采用微弧氧化技术,在2A12铝合金表面制备致密、平整且晶粒细化的微弧氧化铝陶瓷膜(简称微弧氧化膜)。通过扫描电子显微镜和光学显微镜,对不同电参量条件下制备的微弧氧化膜层的微观形貌和组织结构进行分析。当正电压从220 V增大到280 V,随着正电压的升高,微弧氧化膜表面变得光滑致密,且微弧氧化膜的厚度也随电压升高而增厚;当正电压升高到280 V时,表面有微裂纹出现;随着负电压的升高,微弧氧化膜表面的孔径先增大后减小,膜表面变得光滑;负电压48 V时,微弧氧化膜的厚度随着负电压的升高而增加,当负电压≥48 V后,微弧氧化膜的厚度减小;随着电流密度增加,微弧氧化膜的厚度增加,但膜表面较粗糙;因此,在微弧氧化处理过程中,正电压、负电压和电流密度对微弧氧化膜的制备均有较大的影响。  相似文献   

14.
应用液相等离子体电解渗透技术处理45#钢,探索了在无机盐与甲酰胺组成的电解液体系下短时间内实现渗氮为主、同时有少量碳渗入的可能性。一般情况下,工作时工件为阴极,不锈钢或镍为阳极。在本工艺中,当电压较低时,为低温氮碳共渗,以渗氮为主;当电压较高时,属于碳氮共渗,以渗碳为主。结果表明,使用此技术碳氮共渗时间只需10~12min,表面改性层厚度即达30-50μm,其中化合物层20-30μm,扩散层10-20μm。  相似文献   

15.
对采用双真空熔炼制备的32Cr3MoVE轴承钢进行表面渗氮处理,利用滚动接触疲劳试验机在4.5GPa高应力下研究其滚动接触疲劳性能,分析其滚动接触疲劳破坏机制。结果表明:试验钢的有效渗氮层深度为350μm,随距表面距离的增大,渗氮层残余压应力呈先增大后减小趋势,距表面300μm处的残余压应力最大,为610 MPa;渗氮层中存在沿晶界分布的白色脉状组织;利用双参数Weibull分布计算得到其滚动接触疲劳特征寿命、额定疲劳寿命、中值疲劳寿命分别为3.040×10~8,0.357×10~8,2.083×10~8周次;试验钢的滚动接触疲劳破坏模式包括表面起裂和次表面起裂两种,表面起裂试样剥落坑的平均直径及深度均明显大于次表面起裂试样的;表面起裂试样沿表面点蚀坑或划痕处起裂,次表面起裂试样在长时间循环接触应力作用下,次表面材料性能退化,导致裂纹萌生。  相似文献   

16.
采用双层辉光等离子表面合金化技术,在TA2纯钛基体表面制备钼梯度改性层,对改性层截面形貌和元素分布进行分析,并研究改性层的微尺度准静态接触力学性能。结果表明:钼梯度改性层均匀致密,厚度约为12.0μm,由厚度2.7μm的沉积层与厚度9.3μm的扩散层组成;钼、钛元素含量沿厚度方向呈梯度变化,改性层与基体形成良好的冶金结合;改性层的硬度和弹性模量分别为13.82,264.00GPa,比基体的分别增大了10.87,142.38GPa,改性层具有较高的强度和良好的塑性;当试验载荷为15N时,微米压入深度接近15μm,复合硬度和弹性模量与基体的相近,改性层的强化作用完全失效。  相似文献   

17.
提高不锈钢离子渗氮质量   总被引:1,自引:0,他引:1  
离子渗氮作为一种节能的和清洁的热处理工艺,在我国获得了迅速发展,其应用领域还在不断扩大。由于离子渗氮能直接去除不锈钢表面的钝化膜,并易于实现局部渗氮和较容易控制氮势,在不锈钢表面强化方面显示出较大优越性。不锈钢表面强化已成为离子渗氮工艺应用的一个重要方面。 众所周知,经离子渗氮处理后不锈钢的表面硬度、耐磨性和抗擦伤、抗胶合能力有大幅度提高。但是,如若处理不当,容易发生表层剥落、硬化层(渗氮层)厚度不均匀以及耐腐蚀性能大幅下降等质量问题。耐热钢也有类似情况。本文根据近年来发表的研究结果,就这些问题进行分析讨论。  相似文献   

18.
采用二段式真空渗氮工艺对调质态PCrNi3Mo钢进行表面改性处理,在渗氮温度及氮势相同的条件下,对比研究了强渗阶段和扩散阶段时间均为6 h以及强渗阶段时间为4 h和扩散阶段时间为8 h条件下试验钢表层的组织、物相组成、硬度及耐磨性能。结果表明:渗氮后试验钢表层物相为ε-Fe2-3N相,2种渗氮时间下渗氮层的厚度分别为0.6,0.7 mm左右,表面硬度分别为660.3,581.3 HV,显著高于基体的360 HV;前者渗氮时间下渗氮层中化合物层致密性较差,微孔较多,渗氮层硬度过渡良好,在距表面距离大于0.3 mm时的硬度较高,渗氮层的摩擦因数和磨损量较低,磨损表面犁沟较浅,耐磨性能较好。  相似文献   

19.
采用双辉等离子表面冶金技术在机械抛光后的金刚石厚膜表面制备钽涂层,研究了涂层的表面及截面形貌、微区成分、物相组成及结合性能。结果表明:制备得到的钽涂层连续、均匀,由钽金属层与界面处的化合物层组成,厚度约1.7μm,组织为柱状晶;金刚石厚膜与钽涂层的界面处存在厚度约为1.1μm的钽与碳元素呈梯度分布的扩散区,且生成了TaC和Ta2C两种化合物;钽原子填充了金刚石厚膜抛光产生的磨痕,其表面粗糙度由128nm降低为57nm;钽涂层的塑性以及与金刚石厚膜的结合性能良好。  相似文献   

20.
正安徽工业大学现代表界面工程研究中心教授张世宏团队通过第一性原理研究稀土元素对氮原子在体心立方铁表面吸附和扩散的影响,揭示了稀土渗氮的催渗机制。稀土在渗碳、渗氮、喷涂等表面处理技术中有着广泛的应用。稀土辅助渗氮被证明有助于促进扩渗速率,提高渗层厚度,改善渗层性能。然而,其相应的机制至今尚不清晰。该项研究计算了体心立方铁的体结构和表面结构性能,计算了氮的吸附性能;建模模拟了稀土元素在体心立方铁中的占位,计算了稀土元素掺杂的体心立方铁表面氮原子的吸附情况。通过bader电荷和驰豫后的结构变化,研究人员还发现了较  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号