首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用鸟粪石法与Fenton试剂氧化法联合处理垃圾渗滤液,探索了两种方法联合处理的最优条件。结果表明两种方法联合处理能很好地发挥各自的优势。鸟粪石法在初始p H为9.5、n(Mg2+)∶n(PO3-4)∶n(NH+4)=1.3∶1.2∶1、搅拌反应时间为30 min时,且Fenton试剂氧化法在初始p H为3.5、H2O2投加量为0.03 mol/L、n(H2O2)∶n(Fe2+)=4∶1、搅拌反应时间为2 h时,COD去除率达到86.68%,氨氮去除率达到92.27%。该处理效果明显优于单独采用鸟粪石法的处理效果(其氨氮去除率约85%、COD去除率为15%~20%)、单独采用Fenton试剂法的处理效果(其COD去除率约55%、氨氮去除率几乎为零)及两种方法顺序调换的处理效果(其COD去除率约40%、氨氮去除率约20%)。  相似文献   

2.
垃圾渗滤液成分复杂,具有"高污染、高危害、难处理"的典型特性。采用磷酸铵镁沉淀法(MAP)进行了垃圾渗滤液的处理,探究了各因素对去除率的影响,经正交实验确定了优化反应条件及各因素的影响作用。优化工艺条件为:pH值9.5, n(Mg2+)∶n(PO43-)∶n(NH4+)=1.2∶1.0∶1.0,反应时间为20 min,NH3-N去除率为98.13%。各因素对NH3-N去除率影响的大小依次为:pH值n(PO43-)∶n(NH4+)n(Mg2+)∶n(NH4+)反应时间。  相似文献   

3.
研究用Fenton试剂前处理含难降解有机物的垃圾渗滤液,考察了反应pH值、H2O2/Fe2 比值、Fenton试剂投加量和反应时间对可生化性、CODCr去除率的影响.结果表明:在pH=3.0~4.0、H2O2/Fe2 比值为6∶1(质量比)、H2O2投加量为600 mg·L-1、反应时间为120 min的条件下,CODCr的去除率达到75.0%,同时渗滤液的可生化性得到有效改善,BOD5/CODCr由31.9%提高到53.6%.由此可见,Fenton试剂能有效地提高垃圾渗滤液的可生化性,同时显著降低出水CODCr的浓度.  相似文献   

4.
采用混凝沉淀-Fenton氧化处理垃圾渗滤液生化处理出水,通过单因素试验研究了混凝沉淀和Fenton氧化中各因素对去除CODCr的影响,试验结果表明,最佳混凝试验工艺条件为:复合混凝剂比例n(无机组分)∶n(有机组分)为4.0∶1、p H值为8.5、混凝剂投加量0.6 g/L,CODCr的去除率可达到88.6%。Fenton氧化阶段,当体系p H值为4.0、H2O2投加量为16 mg/L、Fe SO4·7H2O投加量为6 g/L、反应时间为110 min时,CODCr去除率高达95.9%。  相似文献   

5.
MAP法去除垃圾渗滤液中氨氮的实验研究   总被引:2,自引:0,他引:2  
采用化学药剂MgCl2 ·6H2 O和NaH2 PO4 使NH 4-N生成磷酸铵镁 (MAP)沉淀 ,以去除垃圾渗滤液中高浓度的氨氮。结果表明 ,若投加MgCl2 ·6H2 O和NaH2 PO4 ,在最佳pH8.5条件下 ,控制Mg2 :PO3- 4:NH 4的比例为 1:1:1左右时 ,渗滤液中氨氮的去除率可达 98%以上。  相似文献   

6.
采用Fenton-eMBR组合工艺处理垃圾渗滤液,先通过正交试验确定Fenton法的优化条件,再使预处理后的尾水进入eMBR系统。结果表明,Fenton过程影响因素的主次关系为pH>Fe2+>n(H2O2):n(Fe2+)>反应时间,优化反应条件为:pH=5、反应时间2 h、n(H2O2):n(Fe2+)为3:1、FeSO.47H2O的投加量为0.03 mol/L;以陶粒为填料的eMBR系统稳定运行后COD、BOD5去除率为71.21%、73.72%,实现了同步硝化与反硝化,NH3-N的去除率达到88.61%;经Fenton-eMBR工艺处理后的渗滤液出水中COD、BOD5、NH3-N、TN、TP的去除率分别达到91.6%、90.2%、92.0%、89.9%、96.8%。  相似文献   

7.
研究了Fenton法和超临界水氧化法(SCWO)处理垃圾渗滤液的效果,并将Fenton法作为预处理方法和深度处理方法分别与SCWO联用处理垃圾渗滤液,探索其对提高渗滤液中主要污染物COD、NH3-N、色度的去除效果。结果表明,Fenton法作为预处理方法和深度处理方法分别与SCWO联用,2种联合方式均能显著提高各污染物的去除率。但Fenton法作为预处理方法效果优于作为深度处理方法,2者联用,在Fenton法适宜p H为4、n(H2O2):n(Fe2+)=4:1、反应时间2 h,SCWO适宜温度440℃、压力26 MPa、过氧量K=3.0时,COD、NH3-N和色度去除率分别可达到95.8%、71%和99.5%,对NH3-N的去除效果比单一的SCWO显著提高。Fenton法联合SCWO处理垃圾渗滤液比单一采用SCWO运行成本可节约15%~20%。  相似文献   

8.
周鸣  许景明  耿丹丹 《广州化工》2014,(10):80-82,91
利用混凝-Fenton法对中晚期垃圾渗滤液进行预处理研究。首先以PAC为混凝剂,PAM为助凝剂对垃圾渗滤液进行混凝处理,然后对混凝后渗滤液进行Fenton氧化。考察混凝剂用量,起始pH值,H2O2/FeSO4·7H2O投加比,Fenton试剂投药量和搅拌速度对垃圾渗滤液COD去除的影响,并进行正交试验分析。结果表明:混凝法的最佳投药量为1 L渗滤液投加1.5 g PAC和5 mg PAM;Fenton法的最佳条件为:起始pH值为3,H2O2/FeSO4·7H2O投加比为8∶1,Fenton试剂投药量为135 g/L,搅拌速度为150 r/min;各因素对Fenton试验影响大小为:起始pH值Fenton试剂投药量搅拌速度。在最佳条件下,混凝-Fenton法对垃圾渗滤液COD去除率可达91.41%。  相似文献   

9.
王永龙  王洪岩 《辽宁化工》2012,41(2):139-141
MAP法处理垃圾渗滤液,以Na2HPO4·12H2O和MgSO4·7H2O为试验药剂对垃圾渗滤液中高氨氮进行处理,以氨氮作为考察指标,根据单因素试验确定其最佳的工艺条件.试验研究表明:在室温条件下,pH=8.5、M矿∶NH4+∶PO43-的最佳物质摩尔投配比为1.3∶1∶1.2、反应时间20 min、对垃圾渗滤液中的氨氮去除率达到94%,为后续处理奠定了良好的基础.  相似文献   

10.
Fenton氧化-曝气生物滤池处理纤维板废水的试验研究   总被引:1,自引:0,他引:1  
对Fenton氧化-曝气生物滤池处理纤维板厂好氧出水进行系统研究.试验表明,在FeSO4·7H2O投加量为0.003 mol·L-1,进水pH为5.0,n(H2O2)/n(Fe2+)为2∶1,反应时间为2 h的条件下,Fenton试剂对COD的去除率可以达到65%以上,出水BOD5/COD提高到0.36.氧化后废水进入...  相似文献   

11.
采用气浮-混凝-Fenton氧化组合工艺对垃圾渗滤液进行处理。试验研究结果表明,最佳气浮条件:气水比为45~60mL/L、氧化石蜡皂用量为300mg/L、气浮时间为15min;最佳混凝条件:PAM投加量为9mg/L、PAC投加量为1100mg/L、pH值为5、搅拌强度为200r/min;最佳Fenton氧化条件:pH值为3,Fe2+投加量为0.04mol/L,n(H2O2)/n(Fe2+)为15,反应时间为90min。垃圾渗滤液经过气浮-混凝-Fenton氧化处理后COD、NH3-N得到了较好的去除,最终出水COD、NH3-N、TP可达《生活垃圾填埋场污染控制标准》(GB16889—2008)中的排放浓度限值。  相似文献   

12.
王会芳  杨瑞洪 《广州化工》2014,(17):113-114,203
采用Fenton法对高浓度制药废水进行预处理实验。主要考察了Fenton试剂氧化法预处理高浓度制药废水的影响因素,主要讨论pH值、FeSO4·7H2O投加量、反应时间对Fenton氧化工艺对制药废水中CODCr处理效果的影响。实验结果显示,pH值为4、反应时间100 min、FeSO4·7H2O投加量为0.024 mol/L、H2O2/Fe2+投加比为11∶1,CODCr处理去除率为52.1%,可生化性BOD/COD为0.57,效果最为理想。  相似文献   

13.
以沸石为载体,硝酸锰为改性剂制备了负载型Mn-沸石催化剂,采用SEM和BET法对制备的催化剂进行了表征。采用Fenton工艺处理垃圾渗滤液原液,通过正交实验和单因素实验考察了Mn-沸石催化剂对Fenton法处理生活垃圾渗滤液的影响。结果表明,一定量的生活垃圾渗滤液,投加1 mL 30%H2O2,H2O2/Fe2+摩尔比为4∶1、pH为4,加入1 g Mn-沸石催化剂,CODCr去除率可高达90.25%。  相似文献   

14.
Fenton法对丁苯橡胶废水中COD和磷的去除研究   总被引:1,自引:0,他引:1  
为解决丁苯橡胶废水处理不达标问题,采用Fenton试剂法对丁苯橡胶废水生化出水进行后续处理试验研究,考察初始pH、H2O2投加量、n(H2O2)∶n(Fe2+)、反应时间对COD、磷和SS去除率的影响。结果表明:Fenton试剂法处理丁苯橡胶废水,在初始pH为7,H2O2投加量为0.4mL,n(H2O2)∶n(Fe2+)为2∶1,反应时间为70min时,COD的去除率可达到81%左右,磷和SS的去除率接近100%。出水达到《污水综合排放标准》(GB8978—1996)一级排放标准。  相似文献   

15.
采用硫酸亚铁和过氧化氢所构成的Fenton试剂,对经生化处理后的焦化废水进行Fenton高级氧化深度处理,重点考察了废水初始pH,FeSO4·7H2O、H2O2及PAM投加量对焦化生化废水处理效果的影响。结果表明,采用Fenton高级氧化法可使经生化处理后的焦化废水中的COD、NH3-N和色度得到进一步有效去除。对于中等浓度的焦化生化废水,较适宜的Fenton氧化工艺条件:废水初始pH为8~10,FeSO4·7H2O投加量为500 mg/L,H2O2投加量为3.5 mL/L,PAM投加量为4.0 mg/L。在此条件下,COD、NH3-N和色度的去除率分别可达85.9%、97.3%和84.6%。  相似文献   

16.
Fenton氧化法深度处理垃圾渗滤液   总被引:14,自引:4,他引:10  
为了去除垃圾渗滤液中难于生物降解的有机物,采用Fenton氧化法深度处理垃圾渗滤液。得出试验最佳反应条件为:H2O2和Fe2+不混合分3次投加,H2O2和Fe2+的质量比为2∶1,Fe2+的浓度为0.04mol/L。在最佳条件下,进水CODCr的质量浓度为1521mg/L时,反应3h,出水CODCr的质量浓度为120mg/L,可以达标排放。药剂费用估算为6元/t。  相似文献   

17.
采用Fenton试剂氧化法作为液晶显示屏清洗废水的物化预处理工艺,探讨了H2O2投加量、反应初始p H、反应时间以及H2O2与Fe SO4的投加量比对Fenton试剂氧化效果的影响。结果表明,Fenton试剂对该废水预处理的优化反应条件为:质量分数30%的双氧水投加量1.0 m L/L,反应初始p H为3,反应时间180 min,n(H2O2):n(Fe SO4)为5:1。经过Fenton试剂氧化预处理后的废水通过水解酸化-好氧生化处理后,COD和TOC的生化去除率分别达到94%和93%以上;且经过Fenton试剂氧化预处理后,水解酸化-好氧生化系统的COD容积负荷NV由原来直接生化的0.3~0.35 kg/(m3·d)提高至0.45~0.55 kg/(m3·d)。  相似文献   

18.
Fenton处理较长填埋龄垃圾渗滤液的作用机制研究   总被引:1,自引:0,他引:1  
采用Fenton工艺对较长填埋龄垃圾渗滤液进行处理。试验结果表明,Fenton工艺对经过吹脱后的填埋场渗滤液处理的最佳条件为pH=4、n(H2O2)∶n(Fe2+)=10以及Fe2+投加量为0.08 mol/L。同时,在整个试验过程中发现,氧化与絮凝去除有机物作用的相对大小比值a平均为4.6。  相似文献   

19.
以Fenton法处理苯乙烯废水,研究了初始p H、药品投加比、药品投加量和反应时间对Fenton法处理苯乙烯废水的影响。结果表明,Fenton试剂法处理苯乙烯废水的最佳条件为:在反应时间为240min,p H=4,n(H2O2)∶n(Fe SO4·7H2O)=4∶1,V(H2O2)=2m L的实验条件下,废水中苯乙烯去除率可达到96.14%。对Fenton试剂处理苯乙烯废水的表观动力学研究表明,Fenton反应降解苯乙烯废水对苯乙烯的反应级数为1.2255级。  相似文献   

20.
Fenton试剂处理含甲醛有机废水的研究   总被引:1,自引:0,他引:1  
研究了Fenton试剂处理含甲醛有机废水的影响因素及其适宜条件。试验结果表明各影响因素的适宜条件为:在原水CODCr约为1000 mg/L时,n(H2O2)/n(Fe2 )=4,H2O2的投加量为72mmol/L,pH=3,反应时间为2 h。此时CODCr的去除率可达90.85%。同时,考察了Fenton试剂预处理含甲醛为主的脲醛树脂废水的效果,在适宜条件下CODCr的去除率可达80.56%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号