首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对Mg-3Al-0.8Gd合金进行了压缩变形及半固态等温热处理,研究了压缩变形量(10%,15%,20%)、等温温度(530,540,550,560,570℃)及保温时间(3,5,10,15min)对该合金显微组织与硬度的影响,并对比了铸态和热处理态Mg-3Al-0.8Gd合金的拉伸和冲击性能。结果表明:不同条件压缩变形及等温热处理后,Mg-3Al-0.8Gd合金组织均由α-Mg基体和β-Mg_(17)Al_(12)相组成;随着等温温度、保温时间及压缩变形量的增加,合金中的α枝晶逐渐转变为等轴晶,晶粒细化,组织均匀性提高,同时显微硬度增大;压缩变形20%并经550℃保温15 min热处理后,Mg-3Al-0.8Gd合金的抗拉强度、断后伸长率、断面收缩率和冲击吸收能量较其铸态合金的分别提高了11.3%,32.6%,3.8%和23.3%。  相似文献   

2.
采用金属型和挤压铸造两种不同铸造方法对铸态和T6态Mg-10Gd-3Y-0.6Zr合金的组织形貌和力学性能进行研究。结果表明,Mg-10Gd-3Y-0.6Zr合金铸态组织主要由α-Mg初生相和Mg24(Gd,Y)5共晶相组成;挤压铸造所得合金晶粒细小,且呈枝晶状形貌,T6态时合金抗拉强度可达285MPa;金属型所得合金晶粒较粗大,共晶相呈网状分布在晶界处,T6态时合金抗拉强度只有250 MPa。  相似文献   

3.
对铸态Mg-5Zn-1Mn-xSn(x分别为0,0.3,0.6,0.9,质量分数/%)合金进行了330℃×24h+400℃×2h的均匀化处理,然后在应变速率为9.1s-1条件下轧制成厚度为2 mm的合金板,研究了锡添加量对铸态和轧制态合金显微组织和拉伸性能的影响。结果表明:锡的添加可以细化试验合金的铸态及其均匀化处理后的显微组织,并形成高熔点Mg2Sn相,促进后续轧制过程中试验合金的动态再结晶并细化晶粒;经轧制后,试验合金的拉伸性能优于其铸态的,且随着锡含量的增加,轧制态合金的强度与塑性呈先上升后下降的变化趋势,其断裂形式从准解理断裂逐渐向延性断裂转变;Mg-5Zn-1Mn-0.6Sn合金的拉伸性能最佳,其抗拉强度和伸长率分别为337MPa和21%。  相似文献   

4.
Mg-12Gd-3Y-0.5Zr镁合金的显微组织、力学性能及时效析出相   总被引:1,自引:0,他引:1  
通过光学显微镜、扫描电子显微镜、透射电镜、X射线衍射仪、高温拉伸试验机等对不同状态下Mg-12Gd-3Y-0.5Zr镁合金的显微组织、高温力学性能及时效析出相进行了分析。结果表明:该合金铸态组织由α-Mg固溶体、Mg5Gd析出相及α-Mg+Mg24Y5共晶体组成;挤压变形后合金的晶粒尺寸明显减小;合金挤压轧制板材在常温及150℃时有较高的抗拉强度,当温度进一步升高时强度下降较快;合金轧制板材时效析出相在高温(高于250℃)拉伸过程中没有发生相变,但在拉伸过程中会改变分布及形貌,使得变形抗力减小。  相似文献   

5.
分别对高真空压铸AlSi10MnMg合金进行T5(180℃×2 h)、T6(515℃×1 h空冷+175℃×2 h)和T7(460℃×1 h水冷+175℃×2.5 h)热处理,研究了不同热处理条件下该合金的显微组织和拉伸性能。结果表明:经过T5热处理后的铸态试验合金铝基体相长大,圆整度较高,晶粒尺寸主要集中在20~80μm,硅相仍呈细长状,与铸态试验合金相比,试验合金的抗拉强度提高了8.9%,断后伸长率降低了9.1%;经过T6和T7热处理后,铝基体相形状不规则程度降低,晶粒尺寸分别为2~50,2~30μm,组织更均匀致密,硅相由铸态时的细长状演变为规则的圆形,试验合金的抗拉强度分别降低了26.0%和23.9%,断后伸长率分别提高了54.5%和72.7%;铸态和T5态试验合金的拉伸断裂方式均为韧脆混合断裂,T6和T7态试验合金的断裂方式则以韧性断裂为主,其中T7态试验合金拉伸断口中的韧窝细密且深,塑性更好。  相似文献   

6.
采用激光立体成形技术制备TC4合金(沉积态)并进行退火处理,研究了沉积态和退火态合金的显微组织和拉伸性能,并与传统TC4合金的进行了对比。结果表明:激光立体成形合金的沉积态显微组织主要由针状马氏体α和β相组成,原始β晶界清晰可见,退火态显微组织由α板条和板条间β相组成;与沉积态组织相比,退火态组织中α相的体积分数增加,α板条粗化;沉积态和退火态激光立体成形合金的拉伸性能均优于传统退火态TC4合金的,退火处理降低了合金在垂直于和平行于扫描方向上的性能差异;与沉积态合金的相比,退火态合金在平行于扫描方向上的抗拉强度和屈服强度下降,伸长率和断面收缩率增大,在垂直于扫描方向上二者的拉伸性能相差很小;沉积态和退火态合金的拉伸断口均呈韧窝特征,断裂机制均为韧性断裂。  相似文献   

7.
采用对掺法制备了铸态Mg-9Li-3Al-2Sr-xY(x=0,2.5)合金,研究了元素钇对合金组织和拉伸性能的影响。结果表明:Mg-9Li-3Al-2Sr合金由α-Mg、β-Li、Al4Sr相组成,Al4Sr相主要分布在β-Li相中;Mg-9Li-3Al-2Sr-2.5Y合金主要由α-Mg、β-Li、Al4Sr和Al2Y相组成,Al4Sr相主要分布在β-Li相中,而Al2Y相则弥散分布在基体中;与Mg-9Li-3Al-2Sr合金相比,Mg-9Li-3Al-2Sr-2.5Y合金的抗拉强度变化不大,但伸长率提高了17.3%;Mg-9Li-3Al-2Sr合金的断裂机制为典型的沿晶断裂,而Mg-9Li-3Al-2Sr-2.5Y合金的断裂机制则是以脆性断裂为主,并伴有韧窝的混合型断裂。  相似文献   

8.
Mg-1.5Mn-1.5Y-3Sn合金显微组织及力学性能研究   总被引:1,自引:0,他引:1  
采用挤压结合固溶时效方法,对铸态Mg-1.5Mn-1.5Y-3Sn合金进行了处理。利用扫描电镜、X射线衍射仪及显微硬度计等,研究该本合金在不同的热处理工艺下的显微组织及力学性能。试验结果表明,在铸态下,本合金的显微组织由α-Mg基体、大量颗粒状的第二相Mg2Sn、少量的针状YMg—Sn相组成。经过挤压和固溶后,微观组织中出现纤维状条纹,获得最佳力学性能的时效时间是66h(〈180℃)。拉伸试验表明,最大延伸率8为7%,抗拉强度约为230MPa。断口分析发现,合金的断裂方式主要为准解理断裂。  相似文献   

9.
熔炼制备了不同锶含量的Mg-8%Li-3%Zn(质量分数)合金,通过光学显微镜和拉伸试验机研究了元素锶对不同状态合金显微组织和力学性能的影响。结果表明:随着锶的加入,铸态合金中出现沿晶界网状分布的含锶化合物,使铸态合金呈脆性断裂;随着锶含量的增加,铸态合金的强度和伸长率均下降;合金经挤压后,网状分布的锶化合物变为细小的块状,弥散分布在合金组织中,强度和塑性都得到了很大的提高;随着锶含量的增加,挤压态合金强度先增大后下降,塑性则呈下降趋势;挤压态合金经重熔再挤压后,其抗拉强度与屈服强度比挤压态合金的分别提高了15%与30%,而塑性微降。  相似文献   

10.
采用表面机械研磨对铸态Mg-3Al-1Sn合金进行处理,并进行了物相和组织分析,以及耐腐蚀性能和不同温度下的力学性能测试与分析。结果表明表面机械研磨明显细化了合金的晶粒,显著提高了合金的高温力学性能和耐腐蚀性能,但未改变合金的物相组成。表面机械研磨使150℃、300、450℃条件下的抗拉强度分别增加53%、154%、369%;腐蚀电位正移511m V、腐蚀电流密度减小48.8m A/cm2。  相似文献   

11.
开发和制备了Mg-Ca-Zn-Fe-Ni-Cu可溶合金,对铸态和热挤压态合金的显微组织和力学性能进行了对比,研究了热挤压态合金的溶解性能、应用性能等。结果表明:试验合金的密度约为1.8g·cm~(-3),组织由α-Mg、Mg2Ca、Mg_2Ni、Mg_2Cu及Mg_6Ca_2Zn_3等相组成,热挤压态合金的基体相和析出相尺寸均小于铸态合金的,并沿热挤压方向分布;经热挤压处理后合金的抗拉强度和伸长率增大,硬度升高;热挤压态合金的溶解速率随温度的升高而增大,室温浸泡24h后合金的质量损失率为40%,而60℃浸泡24h后合金已完全溶解;采用挤压态合金加工的压裂球在90℃和70 MPa下的压降比为0.86%,密封性良好;现场试验结果显示该合金压裂球的应用效果良好。  相似文献   

12.
对铸态Ti28Co14Ni37.12Zr20.88高熵合金在不同温度(673,723 K)下进行回火热处理,研究了回火温度对高熵合金显微组织和力学性能的影响。结果表明:铸态、673 K回火态、723 K回火态合金的显微组织均由体心立方结构TiNi基体相和少量面心立方结构Ti2Ni第二相组成;随着回火温度升高,TiNi相晶粒和Ti2Ni相颗粒得到细化;铸态合金经过回火热处理后,其弹性极限和屈服强度增大;673 K回火态合金的抗压强度低于铸态合金,但回火温度升高至723 K后,抗压强度提升,高于铸态合金;铸态高熵合金的断裂机制以解理断裂为主,沿晶断裂和韧性断裂为辅;673 K和723 K回火态高熵合金的断裂机制以解理断裂为主,沿晶断裂为辅。  相似文献   

13.
为了提高铸造GH696高温合金的力学性能,对该合金在1 000℃进行了等径角挤压变形,对经挤压变形及热处理后的组织与性能进行了研究。结果表明:该合金铸态组织经等径角挤压后得到了显著的细化;铸态合金经挤压变形后进行热处理时会发生再结晶;随挤压道次的增加,铸态组织的特征逐渐减少,强度和塑性得到提高;铸态合金经挤压变形和热处理后,即使还保留少量的铸态组织特征,但其强度和塑性均可达到锻态的水平。  相似文献   

14.
通过增加CoCrFeMnNi合金中的铁含量,制备了低成本富铁中熵合金Fe60(CoCrNiMn)40(原子分数/%),对其进行了1 200℃×3 h均匀化处理、轧制和900℃×1 h退火处理,研究了该合金的显微组织、拉伸性能及耐腐蚀性能等。结果表明:试验合金由面心立方结构的单一奥氏体相组成,再结晶晶粒大小均匀,平均晶粒尺寸约为17.8μm,再结晶晶粒内出现退火孪晶;试验合金在室温下表现出优异的拉伸性能和应变硬化能力以及在NaCl溶液中显著的自钝化行为和优异的耐腐蚀性能,其抗拉强度为603 MPa,屈服强度为226 MPa,断后伸长率为81.6%,在NaCl溶液中的自腐蚀电位为-0.461 6 V,自腐蚀电流密度为2.74×10-6 A·cm-2,电荷转移电阻为2.94×105Ω·cm2;与其他富铁多组分合金相比,试验合金的抗拉强度和断后伸长率更大,塑性应变高出10%以上,自腐蚀电流密度更低。试验合金的拉伸断口由均匀分布的韧窝组成,拉伸断裂方式为韧性断裂;在...  相似文献   

15.
稀土铒对铝-铜-镁-银合金显微组织与力学性能的影响   总被引:2,自引:0,他引:2  
采用力学性能测试、X射线衍射、显微组织观察等方法,研究了稀土元素铒对铝-铜-镁-银合金组织与力学性能的影响.结果表明:添加0.2%Er(质量分数)有助于降低铸态合金的晶粒尺寸,提高铸态合金的室温与高温力学性能;然而,铒降低了挤压态合金的时效硬化与185℃峰时效处理后的拉伸性能,这是由于铒与合金中的铝、铜形成了Al8Cu4Er稀土化合物相,减少了用于固溶时效的铜元素,最终使强化析出相--Ω相的体积分数减少.  相似文献   

16.
采用热挤压成型工艺制备了Al-0.7Fe-0.2Cu-0.02B铝合金棒材,研究了挤压比对其显微组织和拉伸性能的影响。结果表明:合金在挤压变形过程中发生了动态再结晶,随着挤压比增大,再结晶晶粒细化,且分布得更加均匀;挤压变形后,铸态合金中的网状第二相Al6Fe转变为Al3Fe,随着挤压比增大,Al3Fe相逐渐细化并在晶界处聚集;随着挤压比从6增大到28,合金的抗拉强度从106.53 MPa增至122.67 MPa,屈服强度从78.88 MPa增至84.65 MPa;通过数据拟合得到挤压态合金屈服强度与平均晶粒尺寸的关系为σ0.2=63.8+77d-1/2。  相似文献   

17.
用真空熔炼法制备了AlCrFeNi多主元高熵合金,利用光学显微镜、X射线衍射仪、扫描电子显微镜等研究了AlCrFeNi合金铸态及经不同工艺热处理后的组织,并对合金进行了高温拉伸及蠕变试验。结果表明:该合金在铸态下是由白色的α-(Cr,Fe)和灰色的NiAl相构成,呈BCC结构的共晶组织,硬度为411.3HV;随着热处理温度(900~1 200℃)的升高,合金两相结构没有变化,晶粒略有长大,具有较好的高温组织稳定性;700℃高温短时拉伸和蠕变试样断口均呈现出沿晶断裂和韧性断裂的混合断口特征,拉伸时该合金的伸长率和断面收缩率分别为30.6%,41.0%,具有较好的高温塑性。  相似文献   

18.
对铸态镍铝青铜(NAB)进行了920℃正火和675℃退火热处理,研究了不同状态NAB的显微组织和拉伸性能;采用直流电压降(DCPD)法测试了其疲劳裂纹扩展速率,观察了裂纹扩展路径及疲劳断口形貌。结果表明:退火态与铸态试样的显微组织均由基体α相、残余β相以及三种Ni-Fe-Al金属间化合物相(κⅡ,κⅢ,κⅣ)组成,而正火态试样组织则由较多的残余β相以及均匀分布的κⅣ相组成,其强度更高但塑性明显降低;铸态试样的疲劳裂纹扩展速率最快,正火态试样的最慢;铸态和退火态试样中的疲劳裂纹在κ相相界处扩展,断裂方式主要为脆性解理断裂,而正火态试样的疲劳裂纹主要穿过α相扩展,断口出现了疲劳辉纹,且其疲劳裂纹扩展路径最为曲折。  相似文献   

19.
对熔模精密铸造的近α型TG6钛合金依次进行了热等静压和不同温度退火处理,研究了不同状态合金的显微组织和拉伸性能。结果表明:铸态合金的显微组织主要为魏氏组织,组织中存在缩松缺陷;其室温抗拉强度和伸长率分别为871.3 MPa,0.8%,缩松处为断裂源。900℃热等静压处理消除了缩松缺陷,合金的室温伸长率提高至3.7%,拉伸断口呈准解理断裂特征。经700~800℃退火处理后,合金组织中的β板条部分溶解并析出条状及颗粒状硅化物,在α板条中弥散分布着α2相析出物;其室温伸长率提高到11%以上,室温及550℃拉伸断口为韧性断裂和解理断裂共存的混合型断口,而650℃和700℃拉伸断口呈腐蚀开裂特征。  相似文献   

20.
采用真空感应熔炼法制备Al0.3CoCrFeNi高熵合金,对其进行不同变形量(30%,60%,90%)的轧制变形,利用光学显微镜、扫描电镜、X射线衍射仪、显微硬度计、电子拉伸机和电化学方法等研究不同变形量合金的显微组织、力学性能和耐腐蚀性能。结果表明:铸态Al0.3CoCrFeNi高熵合金具有等轴晶组织,在轧制过程中晶粒沿着轧制方向被拉长细化,经90%变形量轧制后形成了纤维状组织;随变形量的增加,Al0.3CoCrFeNi高熵合金的硬度和强度都得到提高,但是伸长率却下降;在质量分数为3.5%的NaCl溶液中,轧制合金的自腐蚀电流密度较铸态合金的大,表现出较差的耐蚀性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号