首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过简便的两步水热法,在碳布(CC)上直接合成了一种新型的CC/MnO_2/LiMn_2O_4复合材料,并将其用于超级电容器电化学性能研究,结果表明,在0.5 A·g~(-1)的电流密度下,CC/MnO_2/LiMn_2O_4复合材料的比容量达292.91 F·g~(-1),大于CC/MnO_2的比电容(233.52 F·g~(-1)),LiMn_2O_4和MnO_2发挥协同效应提高了超级电容器的电化学性能。  相似文献   

2.
采用改进的Hummers法制备氧化石墨,将制备好的MnO_2微球均匀分散在氧化石墨烯分散液中,水热反应自组装制备MnO_2微球/石墨烯气凝胶复合材料(MnO_2/GA),对其物相、形貌、比表面积进行表征,并测试了其电化学性能。结果表明,MnO_2微球嵌入包覆在了石墨烯片层中,电流密度0.5 A·g~(-1)下,MnO_2/GA的比电容为175.5 F·g~(-1)高于MnO_2的比电容(78.4 F·g~(-1)),且经过1 000次循环,MnO_2/GA具有更稳定的循环性能。  相似文献   

3.
本文通过使用一种简单有效的电沉积工艺,利用一维MnO_2纳米线成功构筑了结构稳定的三维丝网状MnO_2/r GO/NF复合电极材料。经结构表征可知,丝网状MnO_2纳米线在无任何粘结剂的情况下,均匀的原位生长在具有自支撑结构的三维rGO/NF表面。该方法制备的复合电极在0.5A·g~(-1)的电流密度下测得比电容为213F·g~(-1),当电流密度增加至10A·g~(-1)时,倍率性能为95%。循环测试5000圈(1A·g~(-1)),电容保持率为92.5%。复合电极材料上述性能主要归因于丝网状MnO_2的多孔结构与赝电容的协同作用,为反应提供了足够的电化学活性位点和稳定的结构,从而使其成为构建高性能储能器件的一种极具开发潜力的电极材料。  相似文献   

4.
MnO_2具有低成本、无毒性、高天然丰度和优异的理论比电容等优点,被认为是一种极具前景的超级电容器(SC)电极材料。赝电容电极材料MnO_2仍然存在导电性差以及充放电过程中易剥落的问题。本文利用恒电流沉积的方法在硝酸预氧化处理的碳纸表面制备了一种MnO_2/CNTs/MnO_2复合电极材料。X射线衍射(XRD)、扫描电子显微镜(SEM)和氮吸附测试证明,所制备的复合材料具有一种三明治状的夹层结构,同时富含5 nm左右的介孔,介孔结构能够保证电解液离子的高效传输。采用三维立体的碳纸能够为MnO_2提供丰富的附着位点,而电沉积法合成的α-MnO_2生长在有效的导电位点上,具有蓬松多孔的形貌,在MnO_2发生膨胀/收缩过程中,这种海绵状形貌可以有效降低材料受到的膨胀应力。中间层碳纳米管(CNTs)相互搭接于内外两层MnO_2之间,作为一种导电中继,提高了复合材料的导电性。该复合材料具有优异的电化学性能:在0.1 A·g~(-1)的电流密度下,能够获得428.8 F·g~(-1)的可逆比电容,并在5 A·g~(-1)的高电流密度下仍能具有80%的电容保持率。同时,电极表现出优异的循环稳定性,在1 A·g~(-1)循环6000次之后比电容仅衰减5%。  相似文献   

5.
制备了不同聚苯胺碳含量的复合电级材料(MnO_2-PAn C)。实验结果表明,材料中的锰氧化物是以MnO_2的形式存在;5种材料中MnO_2-PAn C-0.1具有最好的可逆性和电容特性,比电容为459F·g~(-1)。交流阻抗测试结果表明MnO_2-PAn C-0.1具有最小的电荷传递电阻和最快的表面离子扩散速度。  相似文献   

6.
将氧化石墨(GO)还原为石墨烯(GNS),以高锰酸钾(KMnO_4)和硫酸锰(MnSO_4)为锰源,在石墨烯基体上合成二氧化锰/石墨烯(MnO_2/GNS)复合电极材料。采用扫描电子显微镜(SEM)、X射线衍射(XRD)对材料的微观形貌和晶体结构进行表征;将电极材料制备成复合电极片并组装成对称型超级电容器,采用恒流充放电对其进行电化学性能测试。结果表明,复合电极材料在5A·g~(-1)的电流条件下,比容量达到291.5 F·g~(-1),在循环200次后电容保持率达到95.6%,具有良好的电化学性能。  相似文献   

7.
以盐酸为掺杂剂,苯胺为单体,过硫酸钾为引发剂,用MnO_2作添加剂,以水溶液聚合法制备了导电聚苯胺/MnO_2复合电极材料。将所制备的材料制作成超级电容器用的电极片,通过对电极材料进行CV测试、阻抗测试及超级电容器充放电测试,探讨了MnO_2添加量对聚苯胺/MnO_2复合电极的电化学性能影响。结果表明,当苯胺用量为0.3 mol时,MnO_2添加量为1.5 g时所制备的聚苯胺/MnO_2复合电极材料具有最佳的电化学性能。基于该电极片的超级电容器比电容高达408 F·g~(-1)。  相似文献   

8.
采用水热法,通过控制反应时间制备出不同形貌和尺寸的Co_3O_4材料。利用XRD和SEM对其结构和形貌进行表征,采用循环伏安、恒电流充放电和交流阻抗等方法测试了其电化学性能。结果表明,随着反应时间的延长, Co_3O_4材料的晶粒尺寸增大,形貌由不规则颗粒状变为正立方体,其比电容不断降低。在电流密度为0.2 A·g~(-1)时,反应5 h、 10 h和15 h所制备的Co_3O_4材料的比电容值分别为153.3 F·g~(-1)、 99.3F·g~(-1)和51.1 F·g~(-1)。当电流密度从0.2 A·g~(-1)增大到1.8 A·g~(-1)时,反应5 h、 10 h和15 h所制备的Co_3O_4材料的比电容值分别为96.3 F·g~(-1)、 91.3 F·g~(-1)和27.1 F·g~(-1),其比电容保持率分别为62.8%、 91.9%和53.0%。水热反应5 h所制备的Co_3O_4材料具有最好的比电容。  相似文献   

9.
采用一步水热法制备具有海胆状纳米/微米结构的MnO_2和MnO_2/rGO复合电极材料。用扫描电子显微镜(SEM)和透射电子显微镜(TEM)表征分析其微观形貌,X射线衍射(XRD)对其成分进行分析,结果表明:rGO,MnO_2成功复合在一起。rGO包覆在海胆型MnO_2表面,有效增大了MnO_2导电率。MnO_2∶rGO=1∶1的复合材料在电流密度为0.5 A·g~(-1)时比电容可达200.13 F·g~(-1)。经过5000次循环充放电后,其比电容保持率为92%。  相似文献   

10.
《广州化工》2021,49(7)
采用水热法和煅烧法相结合制备得到直接生长在泡沫镍上的网格状NiFe_2O_4纳米片阵列。采用X射线晶体衍射仪、扫描电子显微镜、透射电子显微镜等表征手段对其组成和结构进行表征并作为超级电容器电极进行测试。电化学性能测试结果表明,制得的NiFe_2O_4纳米片阵列结构电极具有较高的比电容和优异的电学性能。在电流密度为1 A·g~(-1)时,比电容量高达到722.05 F·g~(-1)。在电流密度为10 A·g~(-1)时,比电容为464.73 F·g~(-1),比电容量仍保持在1 A·g~(-1)时比电容量的64.36%。  相似文献   

11.
以生物质秸秆为碳源,利用水热结合KOH活化法制备了多孔碳材料,对其结构与形貌进行了表征。采用三电极体系,在不同浓度的Li_2SO_4电解液中,对多孔碳电极进行循环伏安、恒电流充放电和交流阻抗测试。结果表明,在0.5 mol·L~(-1)的Li_2SO_4电解液中,秸秆基生物质碳材料呈现出较好的电化学性能。当电流密度为0.5 A·g~(-1)时,比电容可达224 F·g~(-1);经1500次充放电测试后,比电容保持率高达94.1%,循环性能良好。  相似文献   

12.
《辽宁化工》2021,50(1)
超级电容器(SCs)以其功率密度高、寿命长、生态友好、成本低等显著特点受到研究者的广泛关注。然而,能量密度仍然较低,限制了其进一步的应用。因此,选择具有高比电容的电极材料是提高超级电容器电化学性能的重要方法之一。采用简易的一步水热法成功地制备出过渡金属碳酸氢盐Ni(HCO_3)_2电极材料。经实验证明,该材料具有良好的电化学性能,在电流密度为1A·g~(-1)时具有较高的比电容2056F·g~(-1),且当用10A·g~(-1)的电流密度进行测试时比电容仍有1292F·g~(-1),说明Ni(HCO_3)_2材料具有良好的倍率性能。此外,在5 A·g~(-1)电流密度下循环2 000圈后仍然具有93%的比容量保持率,具有良好的循环稳定性。  相似文献   

13.
本研究以MAXene(Ti_3AlC_2)刻蚀和剥离得到的MXene(Ti_3C_2)为基底,在酸性条件下将苯胺单体负载到MXene上制备MXene/PANI复合材料。利用场发射扫描电镜(SEM)、X射线衍射(XRD)对材料进行表征,在1 M H_2SO_4电解液中,对合成的复合材料进行电化学性能测试。结果表明,该种方法可成功制备MXene/PANI复合材料,在电流密度为0.5 A·g~(-1)时,复合材料比电容达到256.6 F·g~(-1),优异的电化学性能使得该材料可作为一种理想的超级电容器电极材料。  相似文献   

14.
以土豆为碳源,乙二胺为氮源,氢氧化钾为活化剂制备具有微孔结构高比表面积氮掺杂活性炭。通过N_2物理吸附、扫描电镜、透射电镜、拉曼光谱和元素分析研究活性炭比表面积、孔结构、形貌及元素组成,并测试其电化学性能。结果表明,当碱碳质量比为5∶1时(NC600-800-5),活性炭材料比表面积最高2 440 m~2·g~(-1)、孔容最大1.07 cm~3·g~(-1)、孔径最大0.82 nm和1.80 nm。电流密度1 A·g~(-1)时比电容可达370 F·g~(-1),经3 000次循环充放电后,比电容保持率为95.2%。  相似文献   

15.
以壳聚糖为碳源和氮源,采用预碳化处理和KOH活化两步法制备了壳聚糖多孔碳材料,考察了活化剂KOH用量对电极材料形貌、结构以及电容性能的影响。结果表明:当KOH与预碳化壳聚糖质量比为0.6∶1时,制备的多孔碳材料KOH-CTS-0.6具有最优的电化学性能。KOH-CTS-0.6具有大比表面积(1 348 m~2·g~(-1)),含有丰富的N、O元素(2.9%N和7.4%O)。在电流密度为0.5 A·g~(-1)时,KOH-CTS-0.6的比电容为235.2 F·g~(-1),显示出优秀的倍率能力;在电流密度为10 A·g~(-1)的大电流时,其比电容依然高达178.6 F·g~(-1)。此外,该材料还具有良好的循环稳定性,500次循环后比电容保持率为94%。  相似文献   

16.
《广东化工》2021,48(2)
本文采集我国北亚热带北部地区的土壤作为制备酚醛树脂基碳材料的改性剂,研究表明,少量的土壤固相成分可达到显著增强碳材料的石墨化度和孔隙率的目的。当土壤中的固相组成与活化剂碳酸钾的质量比为0.5︰1时,合成的酚醛树脂基碳材料表现出由二维碳层交错构成三维多孔碳骨架,部分无定型的碳质结构转变为有序的石墨晶型,其比表面积和孔体积分别达到1947 m~2·g~(-1)和1.88 cm~3·g~(-1)。在KOH水系电解液中对其进行电化学性能测试,1 A·g~(-1)电流密度下比电容为226 F·g~(-1),表现出较好的倍率性能。  相似文献   

17.
本文探究了不同形貌的3种镍钴双金属氧化物,包括SW-NiCo_2O_4(自编织状)、NN-NiCo_2O_4(纳米针状)以及C-NiCo_2O_4(纳米片状),最终筛选出具有高负载量致密型电极-SW-NiCo_2O_4。这种自编织结构能够有效解决当活性物质增加时电容性能衰减问题,这对于储能设备性能提高十分重要,也是当前储能领域中的一项挑战。通过对比可知,NN-NiCo_2O_4的负载量最高,较其它两者分别提高了近2倍和5倍,为5.24mg·cm~(-2)。电化学测试显示3种样品的质量比电容依次为:773F·g~(-1)(NN-NiCo_2O_4)、685F·g~(-1)(SW-NiCo_2O_4)和232F·g~(-1)(CNiCo_2O_4),说明活性物质负载量的增加有利于电极材料比电容的提高。然而,SW-NiCo_2O_4拥有更加优异的倍率性能和循环稳定性,分别为89.1%(1~20A·g~(-1))和85%(0.5A·g~(-1), 5000圈)。分析认为,自编织状多孔道结构的NiCo_2O_4更加适用于制备致密型高密度电容器,进而拓宽了镍钴双金属氧化物在超级电容器中的应用前景。  相似文献   

18.
采用脉冲电沉积一步合成得到石墨烯/聚苯胺(PANI)复合材料,通过SEM和XRD对材料的形貌和结构进行了表征,复合材料中聚苯胺为翠绿亚胺态,呈纤维状形貌。将所得石墨烯/PANI复合材料用作超级电容器电极进行电化学性能测试,比纯聚苯胺表现出更优异的超电容性能。电流密度为0.5A·g~(-1)时,石墨烯/PANI的比容量可达703F·g~(-1),且具有良好的倍率性能。  相似文献   

19.
采用硬脂酸处理的纳米碳酸钙作为模板,廉价易得的煤沥青为原料,热解活化制备煤沥青基多孔碳材料。通过调节纳米碳酸钙和煤沥青的质量比,实现了对煤沥青基多孔炭材料孔结构的调控。利用XRD、Raman、碘吸附值、SEM和电化学测试对多孔碳材料的形貌、结构和电化学性能进行了表征与测试。结果表明,制得的多孔碳材料表面具有丰富的孔结构,同时具有优异的电化学性能。当纳米碳酸钙与中温煤沥青粉末质量比为1∶0.5时,所制得的多孔碳材料CP-3的比电容最大,表现出优异的双电层电容行为,在0.1A·g~(-1)的电流密度下的比电容为174.6F·g~(-1),在10A·g~(-1)的电流密度下的比电容为114.1F·g~(-1)。以上研究结果表明,以硬脂酸处理的纳米碳酸钙为模板,煤沥青为原料可以制得电化学性能优异的多孔碳材料。  相似文献   

20.
通过天然高分子介导的水热法和高温退火活化,两步简便制备了有序多孔球花状MoO_3。采用场发射扫描电子显微镜(FESEM)和X射线衍射(XRD)技术,对材料的形貌、组成和结构进行了表征。循环伏安、恒电流充放电和循环寿命测试的实验结果表明,该材料具有良好的超级电容性能,在1A·g~(-1)的大电流密度下,首次放电质量比电容可达240 F·g~(-1)。当测试电流密度为5A·g~(-1)时,充放电循环2000次后的质量比电容的保持率仍可达81%,表现出优良的循环稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号