首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用光学显微镜、拉伸试验机、冲击试验机及维氏硬度计等对X100管线钢埋弧焊焊接接头的组织及性能进行了研究。结果表明:X100管线钢焊接接头粗晶区组织为粗大的先共析铁素体和粒状贝氏体,细晶区主要为细小的铁素体,不完全重结晶区为细晶铁素体、粗晶针状铁素体和粒状贝氏体混合组织;接头的抗拉强度平均值为576MPa,达到母材的80%,拉伸试样断裂于焊缝处;接头焊缝、热影响区的冲击功分别为198J和259J;焊缝区最高硬度为316HV,在临界温度热影响区(ICHAZ)和亚临界温度热影响区(SCHAZ)之间存在软化现象。  相似文献   

2.
采用自制自保护药芯焊丝对X80管线钢管进行环焊缝焊接,分析不同焊接位置接头的焊缝成形、显微组织与力学性能。结果表明:不同焊接位置的焊缝成形良好,该焊丝具有良好的全位置焊接适应性;不同焊接位置焊缝组织基本相同,盖面层由板条贝氏体和针状铁素体组成,填充层为细小的粒状贝氏体和准多边形铁素体;不同焊接位置热影响区细晶区组织基本相同,由细晶铁素体和针状铁素体组成;热影响区粗晶区由粗大的板条贝氏体和粒状贝氏体组成,且立焊位置的晶粒尺寸小于平焊和仰焊位置的;焊缝和热影响区的平均硬度分别为226,227HV,略低于母材的(233HV);立焊位置焊缝和热影响区的-10℃平均冲击吸收功高于平焊位置的;不同焊接位置接头的抗拉强度相当,拉伸断口呈韧性断裂特征。  相似文献   

3.
采用ER50-6焊丝对NM450耐磨钢板进行了CO_2气体保护焊,研究了接头的显微组织、力学性能,以及焊接冷裂纹敏感性。结果表明:焊缝组织为块状铁素体+针状铁素体,热影响区粗晶区和正火区的组织分别为板条马氏体和铁素体+渗碳体;焊缝区、粗晶区、正火区和不完全重结晶区的硬度分别为220,412,234,386HV,马氏体分解导致正火区和不完全重结晶区硬度降低;接头的抗拉强度为768 MPa,焊缝中心、影响区和母材的-20℃夏比冲击吸收功分别为110,140,88J;此钢有一定的冷裂纹敏感性,在环境温度32.6℃、不预热焊接时不会产生裂纹,在环境温度-1.4℃、不预热焊接时,接头根部裂纹率和截面裂纹率均为100%,80℃预热焊接则不会产生焊接裂纹。  相似文献   

4.
以自制自保护药芯焊丝为焊接材料,采用单面焊双面成形技术在三种热输入下焊接了X80管线钢板,研究了焊接热输入对接头显微组织和力学性能的影响。结果表明:随着焊接热输入的增大,焊缝区针状铁素体量减少,热影响区的显微组织由贝氏体铁素体和粒状贝氏体转变为准多边形铁素体和多边形铁素体;随着焊接热输入的减小,焊缝区和热影响区试样的冲击吸收功均增大,冲击断裂方式由准解理或解理型的脆性断裂向韧窝型的韧性断裂转变;焊缝区和热影响区的硬度低于母材的,且热影响区的硬度略低于焊缝区的,随着热输入的增大,焊接接头的硬度整体有所下降。  相似文献   

5.
研究了-30 ℃严寒环境下采用不同预热及保温措施进行电弧焊接的X80钢,观察了不同焊接条件下接头各区域的显微组织特点,通过硬度测试、拉伸试验、低温冲击试验对接头的力学性能进行了表征。研究结果表明:严寒环境下焊接得到的X80钢焊缝以柱状晶为主,填充区主要由针状铁素体、先共析铁素体及少量魏氏组织组成,随着预热及保温温度升高,魏氏组织的尺寸和数量都有所减小;接头硬度的极大值与极小值分别出现在热影响区的粗晶区与不完全重结晶区,随着预热及保温温度的升高,接头的整体硬度降低,焊缝区域的低温冲击韧性增强,而抗拉强度先提高后降低;预热及保温是接头在严寒环境下获得具有良好综合性能的有效措施,预热及保温温度为100 ℃时接头性能最优。  相似文献   

6.
对1.2mm厚DP780双相钢和1.0mm厚HC660双相钢进行了CO2激光对接焊,研究了该异质焊接接头的显微组织和力学性能。结果表明:焊接接头焊缝区组织由粗大板条马氏体和少量铁素体组成,热影响区组织不均匀,分为粗晶区、细晶区和临界区;显微硬度以焊缝为中心呈不对称分布,焊缝区、热影响区和母材的平均显微硬度依次降低,热影响区出现软化现象;焊接接头的抗拉强度和HC660双相钢的相近,伸长率则降低至7.8%,断裂发生在热影响区附近的HC660双相钢处,断裂方式为韧性断裂。  相似文献   

7.
在不同热输入(1.27,1.52,1.90kJ·cm-1)下对800MPa级微合金化碳锰钢板进行了激光对接焊,研究了热输入对焊接接头显微组织、室温拉伸性能和-40℃冲击性能的影响。结果表明:热输入对焊接接头显微组织的影响很小,3种热输入下焊缝区和热影响区粗晶区的显微组织均为板条马氏体,热影响区细晶区的为细晶铁素体及其晶界处的马氏体-奥氏体(M-A)组元,混晶区的为尺寸不等的铁素体和M-A组元;随着热输入的增加,热影响区粗晶区的晶粒尺寸增大,细晶区的变化较小;热输入对焊接接头拉伸性能的影响很小,拉伸断裂位置均位于母材中;随着热输入的增加,焊缝区冲击功先增大后降低,当热输入为1.52kJ·cm-1时达到最大,冲击断口都为韧性断口。  相似文献   

8.
采用E551T1-Ni2药芯焊丝对Q345E钢与14NiCrMo10 6V钢进行焊接,并通过室温拉伸、弯曲、冲击、硬度试验以及金相分析等对焊接接头的力学性能与显微组织进行了研究。结果表明:采用此焊丝可以获得拉伸、弯曲和冲击性能均良好的焊接接头,焊缝硬度在200~250HV之间;焊缝处晶界组织为先共析铁素体、少量无碳贝氏体(从晶界伸向晶内),晶内为针状铁素体与珠光体,个别部位有粒状贝氏体;Q345E钢侧热影响区与焊缝过渡区的组织为沿晶界析出的块状先共析铁素体和向晶内生长的条状铁素体以及少量的珠光体和贝氏体;14NiCrMo10 6V钢侧热影响区与焊缝过渡区的组织为板条状马氏体。  相似文献   

9.
采用维氏硬度、微型剪切、微拉伸和断裂韧度等试验,研究了7B05-T5铝合金复合焊接头焊缝、热影响区及母材的微区力学性能,并结合显微组织、断口扫描等分析了接头各微区力学性能的差异。结果表明:复合焊接头焊缝区组织主要为树枝晶。焊缝区域硬度最低平均为80HV,热影响区平均硬度为110 HV,且存在宽度约为5 mm的软化区,母材硬度值最高平均为123 HV。母材的剪切强度和抗拉强度最高,热影响区次之,焊缝最低。接头热影响区抵抗裂纹扩展的能力最强,母材次之,焊缝最差。  相似文献   

10.
分别在9.2,10.4,12.2,21.0kJ·cm-1焊接热输入下对12MnNiCrMoV钢薄板进行对接焊,研究了焊接热输入对焊接接头粗晶热影响区显微组织、晶粒尺寸、硬度和冲击性能的影响;为了确定不同热输入下接头粗晶热影响区的焊接热循环曲线,对焊接过程的温度场进行了有限元模拟。结果表明:随着焊接热输入增大,粗晶热影响区的组织变化并不明显,均为粒状贝氏体和块状铁素体,但晶粒尺寸逐渐变大,-20℃冲击韧性和维氏硬度均逐渐降低;晶粒粗化是粗晶热影响区产生脆化与软化的最主要原因;通过有限元模拟可知,随着热输入增大,粗晶热影响区相同位置处的峰值温度逐渐升高,并且在高温停留的时间延长。  相似文献   

11.
对EH40船板钢进行大热输入(103 kJ/cm)埋弧焊接,通过拉伸、冲击试验,利用金相显微镜、扫描电镜、透射电镜和电子背散射衍射技术分析焊接接头的组织和力学性能。结果表明,焊缝金属组织为大量针状铁素体、少量先共析铁素体和少量M-A组元。大量晶内针状铁素体的生成分割了原奥氏体晶粒,焊缝有效晶粒尺寸为3.2μm。焊缝分析区域内大角度晶界比例为78.6%,大角度晶界主要分布在50°~60°,对焊缝冲击韧度非常有利。M-A组元尺寸较小,数量较少且均匀分布,不会对焊缝金属的韧性产生不利影响。焊接热影响区粗晶区的组织为贝氏体、针状铁素体和先共析铁素体。高熔点颗粒状析出相(TiO、Al2O3、MgO、TiN)的存在抑制粗晶区晶粒的长大,促进针状铁素体的形成,改善了该区域的冲击性能。力学性能试验结果表明焊接接头的强度高于母材,强韧性匹配良好,与组织分析结果一致。  相似文献   

12.
采用脉冲激光对接焊接1.0 mm厚冷轧DP590双相钢板,研究了焊接接头的显微组织、力学性能及成形性能。结果表明:焊缝区、热影响区、母材区的显微组织分别为板条马氏体,铁素体和板条马氏体、铁素体和马氏体;焊缝区、热影响区、母材的平均硬度分别为344,275,205HV;焊接接头拉伸断裂位置出现在母材区,为韧性断裂;杯突试验过程中裂纹在焊缝中心处形成后垂直于焊缝向热影响区和母材扩展,裂纹在焊缝区切断马氏体板条扩展,而在热影响区和母材区则沿着铁素体和马氏体界面扩展;焊接接头具有良好的成形性能,其杯突值为母材的81.9%,可满足实际生产要求。  相似文献   

13.
通过显微硬度计、拉伸试验机、扫描电镜和X射线衍射仪等研究了激光填丝焊接6mm厚6061铝合金接头的显微组织和力学性能。结果表明:焊缝中心区域的显微组织为等轴晶,由α-Al固溶体组成,无β(Mg_2Si)强化相析出,近熔合区的焊缝组织为柱状晶;焊接接头焊缝的硬度最低,约为73HV,母材的硬度最高,约为110HV,随着距焊缝中心距离的增大,热影响区的硬度先呈波浪式增大,在距焊缝中心2.2~3.8 mm处有所下降,此外为热影响区软化区,在距焊缝中心3.8~4.4mm处又快速增大;焊接接头的抗拉强度为234 MPa,约为母材的71%,高于熔化极惰性气体保护焊接接头的;焊接接头均在焊缝处断裂,接头与母材均为韧性断裂。  相似文献   

14.
对1.2mm厚DP1180双相钢板和1.5mm厚DP590双相钢板进行激光拼焊,研究了接头的显微组织和力学性能。结果表明:接头焊缝表面基本无飞溅现象,成形质量良好;焊缝区由粗大柱状晶组成,为板条状马氏体和铁素体的双相组织;热影响区可分为临界区、细晶区和粗晶区,其组织均由马氏体和铁素体组成,DP1180钢侧的热影响区比DP590钢侧的宽;接头焊缝区的显微硬度最高,平均值达369HV;接头拉伸时均在母材DP590钢中断裂,其抗拉强度与DP590钢的相同,伸长率为14.7%,约为DP590钢的一半。  相似文献   

15.
对2205双相不锈钢板进行了药芯焊丝电弧焊,研究了不同热输入(8.32,11.02,14.04,17.39kJ·cm~(-1))对焊接接头显微组织、铁素体含量、冲击性能、显微硬度和耐点腐蚀性能的影响。结果表明:2205双相不锈钢接头焊缝、熔合区及热影响区均由奥氏体和铁素体组成,铁素体含量随着热输入的增加而逐渐降低;焊接热输入在14.04kJ·cm~(-1)时,接头区域铁素体体积分数基本满足40%~60%的要求;随着焊接热输入的增加,接头焊缝和热影响区的硬度略有降低,焊缝金属的冲击吸收功先升高后下降,热影响区的点腐蚀速率变化不大,焊缝的点腐蚀速率则先下降后升高;焊接热输入在14.04kJ·cm~(-1)时,2205双相不锈钢焊接接头的耐点腐蚀性能最好。  相似文献   

16.
通过裂纹敏感性、显微硬度、弯曲、冲击、拉伸试验及组织观察,研究了汽车大梁用BS700MC低碳微合金钢焊接接头的显微组织和力学性能。结果表明:采用WH80-G焊丝焊接时,BS700MC钢具有较好的抗裂性,焊前不需要预热处理;焊接接头的焊缝组织为针状铁素体和极少量贝氏体与先共析铁素体;焊接接头具有良好的综合力学性能,焊缝硬度为380HV,与母材相当,接头底部硬度分布波动明显,热影响区存在软化现象,在-20~20℃范围内焊接接头具有良好的冲击韧性;接头的抗拉强度为815 MPa,为母材的97.1%,断裂于热影响区,拉伸断口为韧窝与解理台阶混合型断口。  相似文献   

17.
用药芯焊丝CO2气体保护焊焊接Domex700MC低合金高强钢,用光学显微镜、硬度计和冲击试验机等对焊接接头的显微组织和力学性能进行了分析。结果表明:焊缝金属晶粒细小且分布均匀,有较多针状铁素体,但熔合区组织比较粗大,使熔合区附近塑性降低,为焊接接头的薄弱部位;焊缝金属显微硬度较高,为315HV,而在热影响区为225HV,出现软化现象;焊接接头力学性能优良,具有较高的抗拉强度(630.94MPa)和冲击功(135.34J)。  相似文献   

18.
对D406钢和20钢进行了角焊接,研究了异质钢焊接接头的显微组织和力学性能,此外还研究了D406钢对接接头的力学性能。结果表明:此异质钢焊接接头D406钢侧焊缝区的显微组织主要以板条马氏体为主,熔合区主要是针状马氏体,该区是接头中最易产生裂纹的区域;D406A钢侧焊接接头热影响区靠近焊缝处的硬度最大,约为659 HV;20钢侧焊接接头焊缝区的最高硬度约为350HV,低于D406A钢侧的最高硬度,因而D406A钢侧热影响区的淬硬倾向相对较大;D406A钢对接接头熔合区的冲击功小于母材和焊缝区的冲击功,该焊接接头的拉伸试样均断裂于在焊缝区,抗拉强度的平均值为679 MPa,这与其焊缝区的组织为板条马氏体有很大关系。  相似文献   

19.
通过拉伸、冲击、弯曲、硬度和金相等试验对S355J2G3低合金钢MAG焊焊接接头的力学性能与显微组织进行了研究。结果表明:采用G38 3G3Si1焊丝对S355J2G3低合金钢进行焊接时,可获得拉伸、弯曲和冲击性能均良好的焊接接头;接头硬度的分布较均匀,最高不大于380HV;焊缝组织为沿柱状晶晶界析出的块状先共析铁素体,晶内为细小密集的针状铁素体和少量珠光体;热影响区组织主要为先共析铁素体、针状铁素体、珠光体和少量的粒状贝氏体;母材为均匀细小分布的铁素体和珠光体。  相似文献   

20.
不同冷却条件下激光焊接接头性能研究   总被引:1,自引:0,他引:1  
分别利用焊后空冷和随焊水冷两种随焊冷却方式对2 mm厚低碳钢板进行光纤激光焊接。选择不同激光功率、焊接速度和离焦量进行试验。分析焊后空冷条件下和随焊水冷条件下两种焊接接头成形、金相组织和显微硬度。研究结果表明,随焊水冷条件下的焊缝宽度和热影响区宽度分别小于焊后空冷条件下的焊缝宽度和热影响区宽度;在热输入相等和正离焦的前提下,熔宽随着离焦量的减小而增大。两种冷却条件下的焊缝组织为板条状先共析铁素体和珠光体。随焊水冷条件下热影响区晶粒尺寸较焊后空冷下的晶粒有明显细化。空冷条件下焊缝中柱状晶的生长方向与焊缝中心线成70°~80°,而随焊水冷条件下的柱状晶生长方向几乎与焊缝中心线垂直。焊后空冷和随焊水冷的焊缝区域平均硬度分别为316.7 HV0.2和331.5 HV0.2,均高于母材硬度平均值181.8 HV0.2;同时,随焊水冷条件下焊缝硬度稍高于焊后空冷条件下的焊缝硬度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号