首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以Al-Si共晶成分合金粉末为熔覆材料在AZ91D镁合金表面进行了激光熔覆试验.采用光学显微镜、扫描电镜、能谱仪、X射线衍射仪分析了涂层的微观组织,并利用Thermo-Calc软件分析了涂层的相组成、相成分及结晶转变过程.结果表明,涂层微观组织分为两层,上半层为Al12Mg17基体上均匀分布着Mg2Si树枝晶和细小的Al3Mg2针状相,其结晶过程为液相→液相+Mg2Si→Mg2Si+Al12Mg17→Mg2Si+Al12Mg17+Al3Mg2;下半层由Mg2Si颗粒、α-Mg树枝晶和(α-Mg+Al12Mg17)共晶组织组成,其结晶过程为液相→液相+Mg2Si→液相+Mg2Si+α-Mg→Mg2Si+α-Mg+(α-Mg+ Al12Mg17)共晶组织.研究结果对AZ91D合金表面激光熔覆Al-Si合金涂层微观组织及其转变过程分析具有指导意义.  相似文献   

2.
采用合金平衡组织结构分析法,利用扫描电镜组织观察、电子探针定量成分分析以及X射线衍射和透射电子衍射结构分析,对Mg-Zn-Ca系富Mg区域300°C的相平衡关系及平衡相成分进行研究。结果表明:300°C时,2个三元化合物T1和T2都可与Mg基固溶体相平衡。T1相是一个线性化合物相,成分为15%Ca(摩尔分数),20.5%~48.9%Zn,余量为Mg。T1相为六方晶体结构,晶格常数为:a=0.992~0.945nm,c=1.034~1.003nm,随T1相中Zn含量的增加而减少。化合物T2相也是六方结构,成分为26.4%~28.4%Mg,63.2%~65.5%Zn以及7.1%~8.4%Ca。300°C时,Zn在Mg基固溶体中的溶解度随Ca的加入而增大,最大溶解度达到3.7%。在Mg-Zn-Ca系中300°C等温截面相图的富Mg区域存在着三相区α-Mg+Mg2Ca+T1,α-Mg+T1+T2,α-Mg+T2+MgZn和MgZn+T2+Mg2Zn3。  相似文献   

3.
利用SEM,EPMA,XRD和TEM对Mg-Zn-Ca系富Mg区域三元化合物的成分、结构及其相平衡进行了研究.结果表明,Mg-Zn-Ca系富Mg区域存在2个可与镁基固溶体相平衡的三元化合物T1和T2.其中化合物T1为线性化合物,成分(原子分数,%,下同)为:Ca约16,Zn 16.8-49.5,Mg余量;晶体结构为六方...  相似文献   

4.

利用真空扩散焊接技术,实现了工业纯镁Mg1与工业纯铝Al1060的连接.采用扫描电镜、能谱仪、万能力学试验机、显微硬度测试仪、电化学工作站等对扩散反应层的微观组织、物相成分及其性能进行研究.结果表明,Mg/Al真空扩散焊会在接合处生成由镁铝系金属间化合物组成的扩散反应层,随着保温时间延长,反应层的厚度逐渐增加,微观组织形态发生明显变化.扩散初期反应层呈现为单层结构,Mg2Al3相会在接合界面优先析出.保温时间达到60 min时,界面会生成Mg17Al12新相层.当保温时间延长至90 min时,反应层演变为三层结构,由Mg2Al3层、Mg17Al12层、(Mg17Al12共晶 + Mg基固溶体)层组成;随着保温时间延长,接头的剪切强度呈先升高后降低的趋势,在保温60 min时可承受的剪切力达到1245.7 N,断裂发生在靠近铝侧的Mg2Al3反应层处.各焊接层的显微硬度明显高于镁铝母材,Mg2Al3层具有最高的显微硬度,达到了320.6 HV. 反应层腐蚀速率由大到小的顺序为Mg1、(Mg17Al12共晶+Mg基固溶体)层、Mg2Al3 层、Mg17Al12 层、Al1060.

  相似文献   

5.
研究了固溶处理对Mg-6Al-3Zn-0.25Mn铸造镁合金显微组织和力学性能的影响。结果表明,铸态和固溶态组织主要由α-Mg基体和Mg17Al12相组成,经过400、410和420℃保温18 h固溶处理后,第二相的种类没有发生变化,大量的Mg17Al12相溶入到α-Mg基体中,合金组织中残留了少量颗粒状Al4Mn相,同时也出现了梅花状Mg17Al12相。此外,合金经400℃×18 h处理后,晶粒细化程度最好,且表面清晰平整无缺陷,其室温力学性能得到了明显改善,抗拉强度、屈服强度和伸长率分别达到了184.1 MPa、135.5 MPa和8.9%。  相似文献   

6.
庄志国  丁云龙  张恩诚  周正 《焊接学报》2024,(3):99-106+134-135
利用真空扩散焊接技术,实现了工业纯镁Mg1与工业纯铝Al1060的连接.采用扫描电镜、能谱仪、万能力学试验机、显微硬度测试仪、电化学工作站等对扩散反应层的微观组织、物相成分及其性能进行研究.结果表明,Mg/Al真空扩散焊会在接合处生成由镁铝系金属间化合物组成的扩散反应层,随着保温时间延长,反应层的厚度逐渐增加,微观组织形态发生明显变化.扩散初期反应层呈现为单层结构,Mg2Al3相会在接合界面优先析出.保温时间达到60 min时,界面会生成Mg17Al12新相层.当保温时间延长至90 min时,反应层演变为三层结构,由Mg2Al3层、Mg17Al12层、(Mg17Al12共晶+Mg基固溶体)层组成;随着保温时间延长,接头的剪切强度呈先升高后降低的趋势,在保温60 min时可承受的剪切力达到1 245.7 N,断裂发生在靠近铝侧的Mg2Al3...  相似文献   

7.
制备Mg-5Bi-xCu(x=0,0.2,0.5,1.0,质量分数,%)合金铸锭,研究其铸态组织和沉淀硬化行为。结果表明:铸态Mg-Bi-Cu合金主要由α-Mg枝晶、Mg3Bi2相、MgCu2相和Mg2Cu相组成,Mg3Bi2相和α-Mg基体的取向关系为■,Mg2Cu相和Mg3Bi2相之间的取向关系为■。铸态合金硬度随Cu添加量提高先增大后减小,添加0.5%Cu时硬度最高,为(50.9±1.2)HV。固溶态Mg-5Bi-0.5Cu合金硬度为(49.8±0.9)HV。在175℃时效64 h后,硬度达到峰值(56.1±0.7)HV。时效硬度的提高主要是由于高密度Mg3Bi2相的沉淀强化作用,且由于Cu元素的添加,长杆状Mg3Bi2沉淀相转变为颗粒状和短棒状Mg3Bi2  相似文献   

8.
刘欢  薛烽  白晶  周健  孙扬善 《金属学报》2013,(2):236-242
制备并研究了Mg-(2,3,4)Y-1Zn(原子分数,%)三元合金在铸态、退火、挤压和固溶处理时的显微组织和力学性能.结果表明,随着Y/Zn原子比的升高,铸态合金的显微组织由WZ21和WZ31合金的两相组织(α-Mg+Mg12YZn)转变为WZ41合金的三相组织(α-Mg+Mg12YZn+Mg24Y5).其中Mg12YZn相连接成网状,为18R-LPSO结构,Mg24Y5相分布于Mg12YZn相之间.退火时,WZ21和WZ31合金中部分18R相溶解,基体中析出大量14H-LPSO层片.经过挤压,18R-LPSO相沿挤压方向呈带状排列,退火析出的14H层片整体平动,在α-Mg中仍相互平行.固溶处理后,18R相继续溶解,14H相析出并长大.此时,随Y/Zn原子比升高,合金中14-LPSO相体积分数增加.3种合金挤压态的性能优于相应的铸态、退火态和固溶处理态,随着Y含量的增加,合金强度不断升高,塑性下降,挤压态WZ41合金在室温时抗拉强度达到350 MPa以上.  相似文献   

9.
以Mg-Al-Nd-Ca合金为研究对象,通过测定不同Mg-6Al-2Nd-xCa合金(x=0、0.5、1.0、1.5、2.0、2.5、3.0,%,质量分数)凝固曲线,并通过重熔-等温液淬试验及XRD、OM、SEM、EDS等分析手段,研究了Ca对Mg-6Al-2Nd合金相形成及凝固路径的影响。结果表明,随着Ca含量增加,Al11Nd3和β-Mg17Al12相含量减少,Al2Ca相增多。α-Mg、Al2Nd、Al11Nd3相的析出温度均随Ca含量的升高而降低,其中α-Mg相的析出温度由620℃下降至606℃,Al2Nd相的析出温度由630℃下降至610℃,而Al2Ca相的析出温度则由504℃升高至529℃。Mg-6Al-2Nd-xCa(x=0、0.5,%)合金的凝固路径为L→Al2Nd;L→α-Mg;LAl+Al2  相似文献   

10.
Mg-Zn-Nd合金中的低Nd三元化合物T1相的研究   总被引:2,自引:0,他引:2  
利用扫描电镜、电子探针、X射线衍射仪和透射电镜对Mg-Zn-Nd系低Nd三元化合物T1相的成分、结构及其相平衡关系进行了研究.结果表明,在Mg-Zn-Nd系低Nd侧存在一个六方结构的三元化合物T1相,其晶格常数为a=b=1.5 nm、c=0.87 nm;其成分(原子分数,%)范围为:Mg 27.0-33.4,Zn 60.2-66.4,Nd 6.1-7.4.该化合物在300-400 ℃的温度区间与α-Mg存在两相平衡.在300,350和400 ℃时分别存在T1 α-Mg MgZn,T1 MgZn L及T1 Mg2Zn3 L三相区.  相似文献   

11.
12.
采用低压铸造制备了WE43镁合金,使用OM、SEM、EDS研究了热处理前后合金的显微组织及元素分布情况,并对其力学性能进行测试,分析热处理对其力学性能的影响。结果表明,WE43镁合金铸态组织主要由α-Mg基体和晶界上的Mg24Y5共晶相组成。经过520℃×10h+225℃×14h热处理后,WE43镁合金主要由α-Mg基体、方块相团簇、少量残余Mg24Y5共晶相及针状的时效析出相组成。与铸态合金相比,热处理后WE43镁合金的抗拉强度和屈服强度显著提高,分别达到305.9 MPa和191.8 MPa,但伸长率下降至3.1%。  相似文献   

13.
设计并制备了一种新型低成本、易热变形的Ti-43Al-3.5Mn-0.5W(at%)合金锻锭,并对其组织、室/高温拉伸力学性能、抗高温氧化性、热变形能力进行了系统分析。结果表明,与Ti-42Al-5Mn相比,研制的合金强度、抗高温氧化性、热变形能力更佳,且该合金α2和βo相中具有更低的Mn含量,降低了合金近服役温度下富锰Laves相的析出倾向。合金的固态相变路线为:β→β+α→β+α+γ→β+βo+α+α2+γ→βo2+γ,其中γ相完全溶解的温度(Tγ-solv)约为1250℃,β单相区温度(Tβ或Tα)约为1360℃。锻态合金显微组织为α2/γ片层和片层界面处大量βo和γ混合相,高温强度降低明显。通过两步热处理,锻态合金的高温强度和稳定性均有一定提升,这主要归结为片层组织含量的提高和片层晶团尺寸的细化。1260℃/0.5 h/AC+800℃/...  相似文献   

14.
采用锂盐熔剂保护熔铸Mg-8Li-4Zn-xGd(x=1,3,5)合金铸锭,研究钆含量对铸态合金组织和力学性能的影响。结果表明:Mg-8Li-4Zn-xGd合金基体由α-Mg(HCP)和β-Li(BCC)双相构成。随着钆含量的增加,Mg5Gd共晶相和Zn12Gd化合物相逐渐连成网状,将基体α+β双相隔离成20~40μm的等轴状或类似于铸铁中的共晶团状,可有效细化α-Mg相和连续的β-Li相;组织中大颗粒Mg2Zn11相弥散分布在β-Li相内,Mg51Zn20相分布在α-Mg晶界处;锌元素还可以在β-Li相中析出细小弥散分布的MgZn相,其数量随钆含量的增加而增加,可直接弥散强化β-Li相。此外,锌和钆对合金硬度的影响较大,随着钆含量的增加,合金的抗拉强度提高,但伸长率降低。  相似文献   

15.
研究了热处理对挤压态2195铝锂合金组织和力学性能的影响。结果表明,固溶处理和人工时效处理对挤压合金的力学性能有显著的增强作用,这与析出相的类型、尺寸、数量密度和分布有关。2195铝锂合金在时效过程中的析出顺序为过饱和固溶体(SSSS)→GP区+δ′/β′(Al3(Li,Zr))→δ′+θ′(Al2Cu) +T1 (Al2CuLi)→θ′+T1;其中T1相在析出强化中起主导作用。2195铝锂合金经过525 ℃×60 min固溶后在170 ℃人工时效的峰时效时间是36 h,此时抗拉强度、屈服强度和伸长率分别为579 MPa、537 MPa和5.5%。  相似文献   

16.
通过在Mg-10Gd-2Y-0.5Zr合金中添加Zn,采用SEM、XRD及万能拉伸试验机,研究了Zn添加对其铸态组织和力学性能的影响。结果表明,Mg-10Gd-2Y-0.5Zr合金的铸态组织主要由α-Mg、Mg5(Gd,Y)和Mg24(Y,Gd)5相组成,而添加质量分数为0.5%~1.5%的Zn后,合金的铸态组织主要由α-Mg、Mg5(Gd,Y,Zn)、Mg24(Y,Gd,Zn)5及Mg12(Gd,Y)Zn相组成。添加0.5%的Zn后,合金的室温力学性能明显提高,当Zn含量高于1.0%后,镁合金的室温力学性能开始逐步降低。当Zn含量为0.5%时,合金具有较佳的综合力学性能,其抗拉强度、屈服强度和伸长率分别为197 MPa、160 MPa和4.37%。Zn对Mg-10Gd-2Y-0.5Zr合金铸态力学性能的影响与其铸态组织中Mg5(Gd,Y,Zn)、Mg24(Y,Gd,Zn)5和Mg12(Gd,Y)Zn第二相及其数量有关。  相似文献   

17.
研究了复合加工(挤压+轧制)Mg-2Y-0.5Zn-0.5Ni(摩尔分数,%,MYZN)合金的显微组织和力学性能。结果表明,挤压MYZN合金的组织主要由α-Mg、片状和块状的18R-LPSO相、细条纹状的14H-LPSO相以及Mg2Y和Mg24Y5颗粒相组成。在350℃下轧制后,合金发生了不均匀的塑性变形,形成了大量含有高位错密度的未再结晶区,再结晶晶粒和颗粒相得到显著细化,晶粒尺寸略微增加,LPSO相增多且弥散分布,同时形成了较强的基面织构。拉伸测试结果表明,挤压+轧制合金表现出理想的室温力学性能,其屈服强度(σ0.2)、抗拉强度(σb)和伸长率(δ)分别为372 MPa、409 MPa和8.4%,与挤压合金相比,σ0.2和σb分别提升了10.7%和4.1%。力学性能的提高主要归结为大量小角度晶界的晶界强化、LPSO相的析出和扭折强化以及织构强化。  相似文献   

18.
采用平衡合金法,利用X射线衍射、扫描电镜及能谱分析,确定Mg-Zn-Al三元系富镁角300°Cα-Mg相平衡关系和相组成。结果表明:在富镁角存在3个三相区:α-Mg+Mg17Al12(γ)+Al5Mg11Zn4(φ),α-Mg+Mg32(Al,Zn)49(τ)+Al5Mg11Zn4(φ)和α-Mg+MgZn+Mg32(Al,Zn)49(τ)。与α-Mg相平衡的金属间化合物都具有很大的成分范围,并非呈线性。同时Zn和Al都能够溶解在α-Mg固溶体中,使金属间化合物达到相平衡。  相似文献   

19.
以7A85铝合金结构壁板为研究对象,结合力学性能测试与微观组织分析,研究了分级时效热处理温度与时间对7A85铝合金结构壁板组织性能的影响。结果表明,7A85铝合金单级时效热处理析出相主要为Al2Cu相、Mg2Zn11相与G.P.Ⅱ区,与α-Al基体呈半共格关系,在保持较高强度的基础上兼具了良好的塑性。双级时效处理后合金析出相为Mg2Zn11相、Mg3.5Zn1.5相与MgZn2相,强化机制为G.P.Ⅱ区和Mg2Zn11析出相与α-Al基体的半共格晶格畸变强化,屈服强度与硬度有所上升,塑性随之下降。随着时效保温过程的持续进行,析出相转变为Mg2Zn11相、MgZn2相与Al2CuMg相,且MgZn2为主析出相,与α-Al基体的晶格关系转变为完全非共格,强度随之下降...  相似文献   

20.
Mg-Sn-Y三元系富Mg角500℃等温截面的测定   总被引:1,自引:0,他引:1  
采用合金法,利用XRD、SEM-EDS测定一系列Mg-Sn-Y三元合金在500℃下富Mg角处相平衡关系及各相平衡成分,建立Mg-Sn-Y三元系在500℃下富Mg角处的等温截面相图。结果表明:Mg-Sn-Y三元系富Mg角处存在Mg2Sn、MgSnY、Sn3Y5和Mg24+xY54种化合物与α-Mg固溶体平衡,从而构建3个三相区和4个两相区;Sn在α-Mg基体中的固溶度为2.5%~3.9%(摩尔分数),Y在α-Mg基体中的固溶度为1.1%,但二者不能同时固溶到α-Mg基体中,同时Sn3Y5相中大约可以固溶3.6%~4.1%的金属Mg;由于MgSnY和Sn3Y5等一些高熔点化合物在高温下能够稳定存在,使得Mg-Sn-Y体系有可能成为一种潜在的新型耐热镁合金。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号