首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用于贮存天然气的活性炭I.CLewisetal引言在以前发表的文章中(1),我们介绍了一种通用程序,用来评估碳用作贮存车辆用天然气的吸附剂。在商业上,广泛采用的评价活性炭的方法是甲烷吸附量,即每克炭能够吸附的甲烷(CH4)mmol数,现已表明这一数值...  相似文献   

2.
高表面积活性炭的物理模型   总被引:1,自引:0,他引:1  
  相似文献   

3.
高表面积活性炭的开发   总被引:5,自引:0,他引:5  
  相似文献   

4.
0 引言高表面积活性炭对甲烷的吸附进行了实验室和中试规模的研究,得到在压力为0.5~3.5atm(7—500psia)条件下的粉末和球状活性炭对甲烷在不同温度下的吸附等温线。通过测量恒压下碳样品排气随时间温度的改变,考察了吸附热的热效应。  相似文献   

5.
国外高比表面积木质活性炭的研究进展   总被引:2,自引:0,他引:2  
邹勇 《新型炭材料》1996,11(1):32-34
本文综述了国外高比表面积木质活性炭的研制方法,工艺条件,产品性能及其存在的问题。  相似文献   

6.
天然气贮存     
由于应用中贮存容积的限制,故贮存物料的密度便成为重要的参数。环境温度下天然气(甲烷)的贮存即属此例。吸附虽可用于增加天然气的贮存密度,但在环境温度下,欲要提高吸附量而采用普通方式活化的活性炭,似乎并不适宜甲烷密度的增加。使用水蒸汽活化的PVDC活性炭和CO2活化的CNS活性炭,单位质量的甲烷吸附量皆呈现增加势头;但用贮存容积的观点对此数据进行考虑时,其活化过程的收效并不明显。  相似文献   

7.
综述了碳基天然气储存材料的分类、特性和研究现状,并介绍了极有可能成为21世纪吸附材料的纳米碳材料:富勒烯和巴基管。  相似文献   

8.
高比表面积活性炭的研究与应用   总被引:19,自引:3,他引:16  
本文详细介绍了高比表面积活性炭的制备及活化机理,并对其结构。性能及应用进行了概述。  相似文献   

9.
高比表面积活性炭研制进展   总被引:16,自引:0,他引:16  
王秀芳  张会平  肖新颜  陈焕钦 《功能材料》2005,36(7):975-977,980
高比表面积活性炭具有发达的内部孔隙结构和超强的吸附性能,它作为一种新型材料在许多高效吸附功能材料领域有广阔的应用前景,如化工、制药、食品和环境保护等领域。本文综述了活性炭的制备方法和国内外活性炭的研制状况,展望了活性炭发展趋势,并就目前的两大研究热点高比表面积活性炭在双电层电容器和溶剂回收两大领域的应用进行了着重探讨。  相似文献   

10.
KOH作用下稻壳制备高比表面积活性炭的研究   总被引:5,自引:1,他引:4  
以稻壳为原料、KOH为活化剂,制备了高比表面积活性炭,研究了活化剂用量、活化温度和活化时间对活性炭吸附性能的影响.研究结果表明,活化剂与稻壳的质量比为3:1,在800℃活化1h,制得的活性炭碘吸附值为1520.32mg/g,亚甲蓝吸附值为3442.50mg/g,比表面积为2027.42m2/g.SEM和XRD观察发现,干馏过程及活化过程的共同作用使活性炭产生多孔结构.  相似文献   

11.
以无患子残渣为原料,KOH与K2CO3作为活化剂,采用微波炭化和活化两步法制备超高比表面积活性炭,通过正交实验优化活性炭的制备工艺,探讨了碱炭比、活化温度和活化时间对活性炭吸附亚甲基蓝吸附值的影响。利用N2吸脱附实验、XRD、FT-IR等实验技术,对制备的活性炭结构与性能进行了表征。结果表明,在碱炭质量比为4∶1、活化温度800℃、活化时间30 min的条件下,所制备的活性炭对亚甲基蓝吸附值为595 mg/g,BET比表面积为3 479 m2/g,吸附累积总孔容达1.8262 cm3/g,平均孔径为2.0997 nm。  相似文献   

12.
我国高比表面积活性炭研究现状与发展对策   总被引:1,自引:0,他引:1  
简述了外高比表面积活性炭发展概况,叙述了我国高比表面积活性炭研究现状,并就我国该材料的发展提出了对策。  相似文献   

13.
《新型炭材料》2007,22(4):320-320
超级活性炭的比表面积高达2000m^2/g以上,远高于常规活性炭(一般在300m^2/g~1000m^2/g),又称为高比表面积活性炭,是上世纪80年代后研制的新型活性炭材料,属于高科技产品.超级活性炭除在常规活性炭常用的领域应用外,主要用在常规活性炭无法胜任的其他领域,如能源储存(氢气、天然气和电能的储存)、饮用水的净化、毒气的高效吸附、色谱柱中的填料及催化剂的载体等.  相似文献   

14.
《新型炭材料》2007,22(3):241-241
超级活性炭的比表面积高达2000m^2/g以上,远高于常规活性炭(一般在300m^2/g~1000m^2/g),又称为高比表面积活性炭,是上世纪80年代后研制的新型活性炭材料,属于高科技产品。超级活性炭除在常规活性炭常用的领域应用外,主要用在常规活性炭无法胜任的其他领域,如能源储存(氢气、天然气和电能的储存)、饮用水的净化、毒气的高效吸附、色谱柱中的填料及催化剂的载体等。  相似文献   

15.
高比表面积活性炭的制备及其吸附性能的初步研究   总被引:26,自引:5,他引:21  
以石油焦为原料,采用KOH化学活化法,在不同的活化条件下对石油焦进行活化。研究原料粒度、活化温度以及活化时间对所制得的活性炭的比表面积及孔结构的影响。结果表明:以石油焦为原料可以制得比表面积为3300m2/g的高比表面积活性炭。活性炭的孔径分布较窄,其碘吸附值和苯吸附值均较常规活性炭有大幅度提高。  相似文献   

16.
以聚苯乙烯基大孔吸附树脂球为炭前驱体,经空气预氧化、炭化和活化制备了高比表面积球状活性炭.系统考察了不同氧化和活化条件对氧化球和活化球的物理性能的影响.结果表明:升温速率、氧化温度和氧化时间分别为0.25℃/min、300℃和3h时所得到的氧化球的CCl4吸附值最高,可达970mg/g.此外,当活化温度和活化时间分别为850℃和4h时,球状活性炭的CCl4吸附值最高,为2700mg/g,相应的比表面积为1759m2/g.  相似文献   

17.
能源和环境被认为是本世纪人类面临的两大挑战,从而引起了人们对于"氢经济"的关注,但是氢气的储存是制约"氢经济"发展的最主要的因素。本文简述了不同的储氢方法以及氢能实用化的目标,回顾了以KOH活化制备高比表面积活性炭的的机理和影响因素,并综述和评价了影响高比表面积活性炭吸附储氢的主要影响因素,即比表面积和微孔孔容、孔径大小和分布、表面含氧官能团和杂原子掺杂。到目前还没有一种材料(包括高比表面积活性炭)可以满足美国能源部(DOE)设定储氢系统实用化的目标,对于高比表面积活性炭的孔径控制以及改性研究或许是实现这一目标的途径。  相似文献   

18.
椰壳纤维基高比表面积中孔活性炭的制备   总被引:3,自引:0,他引:3  
以椰壳纤维为原料,制备高比表面积中孔活性炭.采用正交试验设计实验方案,研究KOH和NaOH复合活化法制备活性炭的实验方案与工艺条件.考察了活化剂配比、炭化温度、活化温度、时间和升温速率对所制活性炭吸附性能的影响.在最佳工艺条件下,所制活性炭的比表面积达到2032m2/g,中孔发达,特别是2nm~4nm的,中孔比例达到28%.活性炭对的碘吸附值为1435mg/g,亚甲基蓝吸附值为495mg/g,产率为49%.  相似文献   

19.
以马尾藻为原料,采用KOH活化法制备高比表面积活性炭。探索制备马尾藻基活性炭的实验方案和最佳工艺条件。采用正交实验法研究了炭化温度、炭化时间、低温活化温度、低温活化时间和浸渍时间对制得活性炭比表面积和孔容的影响。采用N_2吸附、SEM表征考察了活性炭的孔隙结构和表面形貌。通过正交实验法分析发现,制备马尾藻基高比表面积活性炭的最佳工艺条件为:炭化温度600℃,炭化时间180min,低温活化温度400℃,低温活化时间45min,浸渍时间2h。在16组实验条件下,制备的活性炭比表面积最大为3 122m2/g,所有样品的孔径几乎全部分布在6nm以内。  相似文献   

20.
活性炭因具有高比表面积和丰富的孔结构而被广泛应用于吸附水处理中的污染物。稻壳具有独特的组成和微观结构, 是制备活性炭的优质碳源。以稻壳为原料, 利用过饱和KOH溶液的预活化和活化双重作用, 在不同温度下制备出超高比表面积活性炭。随着活化温度的升高, 活性炭的比表面积和总孔容逐渐增大。900 ℃下制得的活性炭具有超高比表面积, 达到3600 m2/g, 总孔容为3.164 cm3/g, 明显优于商用活性炭(YP-80, 比表面积为1310 m2/g, 总孔容为0.816 cm3/g)。具有最高比表面积的稻壳活性炭对亚甲基蓝的最大吸附量达到983 mg/g, 几乎是YP-80 (525 mg/g)的两倍。通过吸附动力学拟合, 吸附亚甲基蓝的过程与拟二级动力学模型一致, 表明该过程为化学吸附。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号