首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study proposes two new coding functions for a GHZ state and a GHZ-like state, respectively. Based on these coding functions, two fault tolerant deterministic quantum communication (DQC) protocols are proposed. Each of the new DQC’s is robust under one kind of collective noises: collective-dephasing noise and collective-rotation noise, respectively. The sender can use the proposed coding functions to encode his/her message, and the receiver can perform the Bell measurement to obtain the sender’s message. In comparison to the existing fault tolerant DQC protocols over collective-noise channels, the proposed protocols provide the best qubit efficiency. Moreover, the proposed protocols are also free from the ordinary eavesdropping and the information leakage.  相似文献   

2.
Blind quantum computation (BQC) enables ordinary clients to securely outsource their computation task to costly quantum servers. Besides two essential properties, namely correctness and blindness, practical BQC protocols also should make clients as classical as possible and tolerate faults from nonideal quantum channel. In this paper, using logical Bell states as quantum resource, we propose multi-server BQC protocols over collective-dephasing noise channel and collective-rotation noise channel, respectively. The proposed protocols permit completely or almost classical client, meet the correctness and blindness requirements of BQC protocol, and are typically practical BQC protocols.  相似文献   

3.
We propose a novel quantum dialogue protocol by using the generalized Bell states and entanglement swapping. In the protocol, a sequence of ordered two-qutrit entangled states acts as quantum information channel for exchanging secret messages directly and simultaneously. Besides, a secret key string is shared between the communicants to overcome information leakage. Different from those previous information leakage-resistant quantum dialogue protocols, the particles, composed of one of each pair of entangled states, are transmitted only one time in the proposed protocol. Security analysis shows that our protocol can overcome information leakage and resist several well-known attacks. Moreover, the efficiency of our scheme is acceptable.  相似文献   

4.
We propose two fault-tolerant high-capacity quantum key distribution schemes, in which an entangled pair over a collective-noise channel consisting of one logical qubit and one physical qubit can carry four bits of key information. The basic idea is to use 2-extended unitary operations from collective noises together with quantum dense coding. The key messages are encoded on logical qubits of two physical qubits with sixteen 2-extended unitary operations based on collective noises. The key can be recovered using Bell-state analysis on the logical qubit and a single-photon measurement on the physical qubit rather than three-qubit GHZ joint measurements. The proposed protocols require a collation table to be shared between Alice and Bob in advance. Consequently, the key messages carried by an entangled state, in our protocol, have doubled at the price of sharing the collation table between Alice and Bob. However, the efficiency of qubits is enhanced because a quantum bit is more expensive to prepare than a classical bit.  相似文献   

5.
In many circumstances, a shared key is needed to realize secure communication. Based on quantum mechanics principles, quantum key agreement (QKA) is a good method to establish a shared key by every party’s fair participation. In this paper, we propose a novel three-party QKA protocol, which is designed by using Greenberger–Horne–Zeilinger (GHZ) states. To realize the protocol, the distributor of the GHZ states needs only one quantum communication with the other two parties, respectively, and everyone performs single-particle measurements simply. Then, we extend the three-party QKA protocol to arbitrary multiparty situation. At last, we discuss the security and fairness of the multiparty protocol. It shows that the new scheme is secure and fair to every participant.  相似文献   

6.
The novel quantum dialogue (QD) protocol by using the three-dimensional Bell states and entanglement swapping (Wang et al. in Quantum Inf Process 15(6):2593–2603, 2016) is analyzed. It is shown that there is the information leakage problem in this QD protocol. To be specific, one quarter information of the secret messages exchanged is leaked out unconsciously. Afterward, it is improved to a truly secure one without information leakage. Besides, the security of the improved QD protocol is analyzed in detail. It is shown that the improved QD protocol has some obvious features compared with the original one.  相似文献   

7.
We present a study of the behavior of two different figures of merit for quantum correlations, entanglement of formation and quantum discord, under quantum channels showing how the former can, counterintuitively, be more resilient to such environments spoiling effects. By exploiting strict conservation relations between the two measures and imposing necessary constraints on the initial conditions we are able to explicitly show this predominance is related to build-up of the system-environment correlations.  相似文献   

8.
In this paper, two quantum dialogue (QD) protocols based on the entanglement of GHZ states are proposed to resist the collective noise. Besides, two new coding functions are designed for each of the proposed protocols, which can resist two types of collective noise: collective-dephasing noise and collective-rotation noise, respectively. Furthermore, it is also argued that these QD protocols are also free from the Trojan horse attacks and the information leakage problem.  相似文献   

9.
In this study, the spin-momentum correlation of one massive spin- ${\frac{1}{2}}$ and spin-1 particle states, which are made based on the projection of a relativistic spin operator into timelike direction is investigated. It is shown that by using Non-Linear entanglement witnesses (NLEWs), the effect of Lorentz transformation would decrease both the amount and the region of entanglement.  相似文献   

10.
Based on the von Neumann entropy, we give a computational formalism of the quantum entanglement dynamics in quantum channels, which can be applied to a general finite systems coupled with their environments in quantum channels. The quantum entanglement is invariant in the decoupled local unitary quantum channel, but it is variant in the non-local coupled unitary quantum channel. The numerical investigation for two examples, two-qubit and two-qutrit models, indicates that the quantum entanglement evolution in the quantum non-local coupling channel oscillates with the coupling strength and time, and depends on the quantum entanglement of the initial state. It implies that quantum information loses or gains when the state of systems evolves in the quantum non-local coupling channel.  相似文献   

11.
We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger–Horne–Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.  相似文献   

12.
In this paper, we propose a quantum private comparison protocol based on entanglement swapping, where two distrustful parties can compare the values of their secrets with the help of a semi-trusted third party. The protocol can determine not only whether two secrets are equal, but also the size relationship between them. The two parties can deduce the comparison result based on the keys shared between them and the announcement of the third party. Others including the third party will learn nothing about the values of the secrets, as well as the comparison result. The security of our protocol is analyzed. Furthermore, all the particles can be reused in the same protocol model theoretically. So our protocol is efficient and feasible to expand in network service, which in turn gives a solution to the left problem in Lin et al. (Quantum Inf Process, doi:10.1007/s11128-012-0395-6, 2012).  相似文献   

13.
We propose two schemes of entanglement swapping of atomic states confined in cavities QED useful for quantum computation and quantum communication via a photonic Faraday rotation. They employ a source of linearly-polarized photon, a single photodetector, a quarter-wave plate, and three or four cavities, respectively.  相似文献   

14.
We employ the conditional version of sandwiched Tsallis relative entropy to determine \(1:N-1\) separability range in the noisy one-parameter families of pseudopure and Werner-like N-qubit W, GHZ states. The range of the noisy parameter, for which the conditional sandwiched Tsallis relative entropy is positive, reveals perfect agreement with the necessary and sufficient criteria for separability in the \(1:N-1\) partition of these one parameter noisy states.  相似文献   

15.
By multiple realignments of density matrices, we present a new separability criterion for the multipartite quantum state, which includes the computable cross-norm or realignment criterion and the multipartite partial realignment criterion as special cases. An example is used to show that the new criterion can be more efficient than the corresponding multipartite realignment criteria given in Horodecki et al. (Open Syst Inf Dyn 13:103–111, 2006) and Shen et al. (Phys Rev A 92:042332, 2015).  相似文献   

16.
We investigate the dynamics of two qubits state through the Bloch channel. Starting from partially entangled states as input state, the output states are more robust compared with those obtained from initial maximally entangled states. Also the survivability of entanglement increased as the absolute equilibrium values of the channel increased or the ratio between the longitudinal and transverse relaxation times gets smaller. The ability of using the output states as quantum channels to perform quantum teleportation is investigated. The useful output states are used to send information between two users by using the original quantum teleportation protocol.  相似文献   

17.
A broadcasting multiple blind signature scheme based on quantum GHZ entanglement has been presented recently. It is said that the scheme’s unconditional security is guaranteed by adopting quantum key preparation, quantum encryption algorithm and quantum entanglement. In this paper, we prove that each signatory can get the signed message just by an intercept–resend attack. Then, we show there still exist some participant attacks and external attacks. Specifically, we verify the message sender Alice can impersonate each signatory to sign the message at will, and so is the signature collector Charlie. Also, we demonstrate that the receiver Bob can forge the signature successfully, and with respect to the external attacks, the eavesdropper Eve can modify the signature at random. Besides, we discover Eve can change the signed message at random, and Eve can impersonate Alice as the message sender without being discovered. In particular, we propose an improved scheme based on the original one and show that it is secure against not only the attacks mentioned above but also some collusion attacks.  相似文献   

18.
Two protocols of quantum key agreement (QKA) that solely use Bell state and Bell measurement are proposed. The first protocol of QKA proposed here is designed for two-party QKA, whereas the second protocol is designed for multi-party QKA. The proposed protocols are also generalized to implement QKA using a set of multi-partite entangled states (e.g., 4-qubit cluster state and \(\Omega \) state). Security of these protocols arises from the monogamy of entanglement. This is in contrast to the existing protocols of QKA where security arises from the use of non-orthogonal state (non-commutativity principle). Further, it is shown that all the quantum systems that are useful for implementation of quantum dialogue and most of the protocols of secure direct quantum communication can be modified to implement protocols of QKA.  相似文献   

19.
由于受物理资源和实验条件的限制,在经典计算机上对量子密钥分配(QKD)仿真,为研究者提供一种手段以便更好地掌握这类抽象协议。对以纠缠态为基础的E91协议的量子密钥分配过程进行仿真,重点对比分析了理想环境、有噪环境以及窃听环境下的仿真结果,并验证该量子密钥分配协议的安全性。  相似文献   

20.
In this paper, we investigate the dynamics of entanglement of three-qubit states of a system dissipating into a common environment. By using the tripartite negativity as entanglement measure, our results imply that the three-qubit entanglement can be generated among the three qubits which have no interaction with each other, but interact with the common environment independently. From our analysis, we find that the three-qubit entanglement increases from zero to a stable value which varies with the size of the system with the increasing of the scaled time. Additionally, the extension of the entanglement generation to an arbitrary size of a subsystem is made and some discussion is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号