首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixed polar-nonpolar urethane networks have been prepared by crosslinking various mixtures of polyisobutylene diols (HO-PIB-OH) and polar polytetrahydrofuran diols (HO-PTHF-OH) with stoichiometric quantities of a triisocyanate. Essentially complete crosslinking was demonstrated by very low (<4%) sol fractions in benzene and THF. The mixed networks were biocompatible and had less tissue response than pure PIB as evaluated by bacterial and histological analysis after 11 weeks of implantation at the following sites: dorsal neck muscle, abdominal cavity and near the abdominal aorta.  相似文献   

2.
Photopolymerizable networks are being explored for a variety of biomedical applications because they can be formed in situ, rendering them useful in minimally invasive procedures. The purpose of this study was to establish fundamental relationships between toughness, network chemical structure, and testing temperature of photopolymerizable (meth)acrylate networks deformed in air and under hydrated conditions. Networks were formed by combining at least one monofunctional (meth)acrylate with a difunctional methacrylate, and weight ratios were adjusted to vary the degree of crosslinking, elastic modulus, and glass transition temperature (Tg). Stress–strain behavior and toughness were determined by performing tensile strain to failure tests at temperatures spanning the glassy and rubbery regimes of each network both in air and phosphate‐buffered saline. In air, all of the networks demonstrated a peak in toughness below the network's Tg. At an “equivalent” test temperature relative to Tg, crosslinking concentration and monomer chemistry influenced the toughness of each network. Apparent toughness is significantly altered in an aqueous environment, an effect driven by water absorption into the network causing the Tg to decrease. The results from this study provide the fundamental knowledge required to guide the development of tougher photopolymerizable networks for mechanically strenuous biomedical applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Photoinitiated polymer networks were formed by copolymerization of tert‐butyl acrylate with di(ethylene glycol) dimethacrylate (DEGDMA) or poly(ethylene glycol) dimethacrylate (PEGDMA). The degree of crosslinking was systematically varied by modifying the weight fraction and molecular weight of the dimethacrylate crosslinking agent. An increase in effective crosslink density with increasing crosslinking agent concentrations was confirmed by decreasing equilibrium swelling ratios (q) and increasing rubbery moduli (ER). Glass transition temperatures (Tg) varied from ?22 to 124°C, increasing with increasing DEGDMA content and decreasing with increasing PEGDMA content. Tensile deformation behavior (at Tg) ranged from an elastomeric‐like large‐strain response for lightly crosslinked materials to a small‐strain brittle response for highly crosslinked networks. At low crosslinking levels, the strain‐to‐failure of the network polymers decreased quickly with increasing crosslinking agent concentration. The stress at failure demonstrated a more complex relationship with crosslinking agent concentration. The effect of composition on network structure and resulting properties (q, ER, strain‐to‐failure) decreased as the crosslinking agent concentration increased. The results reveal trade‐offs in Tg, ER, strain‐to‐failure, and failure stress with composition and network structure, and are discussed in light of the wide range of potential applications suggested in the literature for (meth)acrylate‐based photopolymerizable polymer networks including biomaterials and shape‐memory polymers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Two component topologically interpenetrating polymer networks of the SIN type (simultaneous interpenetrating networks) composed of a melamine-cured polyacrylate and three different polyether-based polyurethanes were prepared. The linear polymers and prepolymers were combined in solution, together with the necessary crosslinking agents and catalysts, films were cast and subsequently chain extended and crosslinked in situ. In all cases, maxima in tensile strength significantly higher than the tensile strengths of the component networks occurred at 50% polyurethane : 50% polyacrylate. This was explained by an increase in crosslink density resulting from interpenetration. One of the interpenetrating polymer networks showed only one glass transition temperature (Tg) (measured calorimetrically) intermediate in temperature to the Tg's of the components and as sharp as the component Tg's. This is indicative of phase mixing and indicates at least partial chain entanglement (interpenetration). Some enhancement of other physical properties was also noted.  相似文献   

5.
The photopolymerization of multifunctional acrylate monomers synthesized from castor oil was investigated by photo-DSC. These studies revealed that the extent of photopolymerization depended on the double bond concentration and a greater degree of crosslinking occurred in monomer mixtures with higher difunctional content. The monomer mixtures displayed significantly higher maximum rate of polymerization (Rpmax) and shorter time to reach peak maximum than the pure monomers. DMTA studies of films showed good storage modulus and broad tan δ transitions indicating heterogeneity in the crosslinked networks. The films displayed sub-Tg transitions in the loss modulus curves were possibly due to the side chain motions of the monomer acrylates which increased with increasing triacrylate concentration. Glass transition temperature (Tg) of these networks depended on composition and shifted to higher values with increasing amount of triacrylate.  相似文献   

6.
Poly(l-lactic acid) (PLLA) has poor heat stability above its glass transition temperature (Tg∼60 °C). To improve its softing above Tg, PLLA was mixed with small amount of crosslinking agents and irradiated with various irradiation doses to introduce crosslinking between polymer chains. The most effective agent for radiation crosslinking was triallyl isocyanurate (TAIC). For melt-quenched PLLA, it was found that the most optimal conditions to introduce crosslinking were around 3% of TAIC and the irradiation dose of 50 kGy. The typically crosslinked PLLA showed very low crystallinity because of wide formation of molecular chain network that inhibited molecular motion for crystallization. Notable heat stability above Tg was given by annealing of PLLA samples. Enzymatic degradation of PLLA was retarded with introduction of crosslinks.  相似文献   

7.
Two component topologically-interpenetrating polymer networks were made of the SIN type (simultaneous interpenetrating network) composed of two polyurethanes (a polyether-based and a polyester-based) in combination with an epoxy resin, a polyacrylate and two unsaturated polyesters. The linear polymers and/or prepolymers were combined in solution and in bulk together with the necessary crosslinking agents and catalysts. Films were cast and chains extended and crosslinked in situ. All of the IPN's exhibited one glass transition (Tg) intermediate in temperature to the Tg's of the component networks, and as sharp as the Tg's of the components. This suggests that phase separation may not occur and thus some chain entanglement (interpenetration) of the two networks is involved. The observed Tg's are always several degrees lower than the arithmetic means of the component Tg's. A theory based on interpenetration is developed to account for this.  相似文献   

8.
Slightly crosslinked polystyrene networks are preferable to linear polystyrene in commercial uses where increased thermal properties are favoured. A novel method of production of macrocrosslinked networks has been developed by reaction of polystyrene with mono- and difunctional derivatives of p-xylene, durene and oligomeric chains (n<10) thereof. The reaction system consists of a common organic solvent such as acetic acid or butyl acetate and a catalyst such as H2SO4 or HClO4; the reaction temperature varies between 60°C and 100°C. The degrees of crosslinking and thermal properties of the produced networks depend on the reaction system, the molar ratio of polymer to crosslinking agent and the reactivity of the functional groups; the gelation time varies between 3–12 hours for a fully crosslinked network. Promotion of the formation of regular structure networks without branches in the chains between crosslinks is achieved by the use of difunctional monomers, which favour the formation of linear polybenzylene chains between the polystyrene chains. Use of monofunctional monomers leads usually to branched and slightly crosslinked or grafted polystyrene. In both cases the regions of Tg and Tm increase up to 115°C and 350°C respectively as judged by DSC analysis. This novel crosslinking method has been also applied to crosslinking of copolymers of polystyrene and polymeric chains with aromatic structure in their backbone chain.  相似文献   

9.
Semi‐interpenetrating polymer networks (semi‐IPNs) of castor oil‐based polyurethane prepolymer and nitroguar gum (NGG) with different crosslinking density of the PU network, coded as UNG films, were prepared through varying the trimethanol propane (TMP)/1,4‐butanediol (BDO) molar ratios in the chain extender mixture. The effects of crosslinking density on the structure and properties of the UNG films was investigated by attenuated total reflection Fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical thermal analysis, scanning electron microscopy, crosslinking density measurements, solvent‐extracting tests, and tensile tests. The experimental results revealed that incorporation of TMP crosslinker into the hard segments of polyurethane resulted in a decrease in the aggregation of hard segments. With an increase of the TMP/BDO molar ratios, the semi‐IPN films exhibited the higher crosslinking density, glass temperature (Tg), stiffness, and tensile strength (σb). Furthermore, the experimental results also indicated that NGG restricted the formation of crosslinking networks when the TMP content is relatively high, which led to the negative deviation of the theoretically predicted crosslinking density and Dibenedetto's equation. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

10.
The capability of epoxy‐amine resins to develop residual stresses was studied as a function of temperature and network architecture. These residual stresses were induced while cooling epoxy‐glass bilayers from temperatures higher than the network glass transition temperature, Tg. This behavior was the result of the marked differences (αr − αg), in linear thermal expansion coefficient of the two components, as evidenced by the measurement of αr for the epoxy networks under study. Various network architectures were selected, resulting from variation of (1) the chemical nature of both epoxide and curing agent, (2) the nature and relative amount of the chain‐extensor agent, and (3) the stoichiometric ratio. Three ranges of cooling temperature were observed systematically: first, the range of temperatures above Tg, where no stress has been detected, then an intermediate temperature range (from Tg to T*), where stresses develop quite slowly, and finally, the low temperature range (T < T*), where a linear increase in stress accompanies the decrease of temperature. The two latter regimes were quantitatively characterized by the extent, TgT*, of the first one and by the slope, SDR, of the second one. Tg T* values were shown to be governed by the Tg of the network: the higher the Tg, the larger the gap between Tg and T*. This result was interpreted by accounting for the variation of relaxation rate at Tg from one network to the other. It was also shown that a semiempirical relationship holds between SDR and Tg: SDR decreases monotonically as Tg increases. By inspecting the effects of network architecture in more details, it turned out that SDR is governed by the Young's moduli, Er(TTg), of the epoxy resins in the glassy state: the lower Er(TTg), the lower SDR in a series of homologous networks. As Er(TTg) values are known to be related to the characteristics of the secondary relaxation β, which depends, in turn, on crosslink density, SDR values were finally connected to the amplitude of the β relaxation processes. This finding was corroborated by the measurements on an antiplasticized dense network. Finally, data relative to thermoplastic‐filled networks showed that the addition of thermoplastic reduces the development of residual stresses, whatever the system, is homogeneous or biphasic. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 638–650, 2000  相似文献   

11.
The tribological, mechanical, and thermal properties of an epoxy crosslinking network incorporated with 3C-SiC nanoparticles, serving as a metal-free friction material were investigated by molecular dynamics simulations. The considered models encompass pure epoxy materials with 35%, 50%, 65%, and 80% crosslinking degrees, as well as 3C-SiC/epoxy composite materials at the same crosslinking levels. Glass transition temperature (Tg) of the eight models was analyzed, and the result shows augmenting crosslinking density and addition of 3C-SiC nanofillers improve Tg of all models. Fractional free volume of each model was quantified to reflect the features of epoxy materials and influence the properties at the atomic scale. Frictional force, normal force, and coefficient of friction (COF) were calculated to elucidate the tribological performance of the epoxy-based materials. The introduction of 3C-SiC nanofillers reduces COF. With nanofillers, higher crosslinking degree brings lower COF except 80% crosslinking degree, while without nanofillers, higher COFs are obtained with 35% and 80% crosslinking degrees. 3C-SiC/epoxy composite with heightened crosslinking degree demonstrates superior Young's modulus, elevated tensile stress, and relatively smaller strain. Thermal conductivity analysis highlights the positive impact of both increased crosslinking density and incorporation of 3C-SiC nanofillers on heat transfer. Temperature elevation further enhances thermal conductivity.  相似文献   

12.
Summary Elastomeric networks of polydimethylsiloxane prepared by end-linking chains having molecular weights in the range 18,500 to 220 g mol-1 were studied from -128 to 50°C using a Rheovibron DDV III Viscoelastometer. In the case of the unimodal networks, the glass transition temperature Tg was generally insensitive to degree of cross-linking. The intensity of the tan δ relaxation, however, increased by over an order of magnitude over the range of cross-link densities investigated. Bimodal networks prepared from mixtures of relatively long and very short PDMS chains also had values of Tg which were insensitive to degree of cross-linking. Finally, as expected, the intensities of the tan δ peak for the bimodal networks could not be explained on the basis of simple additivity of contributions from the relatively long and the very short network chains.  相似文献   

13.
Wang S  Yaszemski MJ  Gruetzmacher JA  Lu L 《Polymer》2008,49(26):5692-5699
We present a material design strategy of combining crystallinity and crosslinking to control the mechanical properties of polymeric biomaterials. Three polycaprolactone fumarates (PCLF530, PCLF1250, and PCLF2000) synthesized from the precursor polycaprolactone (PCL) diols with nominal molecular weights of 530, 1250, and 2000 g mol−1, respectively, were employed to fabricate polymer networks via photo-crosslinking process. Five different amounts of photo-crosslinking initiator were applied during fabrication in order to understand the role of photoinitiator in modulating the crosslinking characteristics and physical properties of PCLF networks. Thermal properties such as glass transition temperature (Tg), melting temperature (Tm), and degradation temperature (Td) of photo-crosslinked PCLFs were examined and correlated with their rheological and mechanical properties.  相似文献   

14.
Fully bio‐based soy protein isolate (SPI) resins were toughened using natural rubber (NR) and epoxidized natural rubber (ENR). Resin compositions containing up to 30 wt % NR or ENR were prepared and characterized for their physical, chemical and mechanical properties. Crosslinking between SPI and ENR was confirmed using 1H‐NMR and ATR‐FTIR. All SPI/NR resins exhibited two distinctive drops in their modulus at glass transition temperature (Tg ) and degradation temperature (Td ) at around ?50 and 215 °C, corresponding to major segmental motions of NR and SPI, respectively. SPI/ENR resins showed similar Tg and Td transitions at slightly higher temperatures. For SPI/ENR specimens the increase in ENR content from 0 to 30 wt % showed major increase in Tg from ?23 to 13 °C as a result of crosslinking between SPI and ENR. The increase in ENR content from 0 to 30 wt % increased the fracture toughness from 0.13 to 1.02 MPa with minimum loss of tensile properties. The results indicated that ENR was not only more effective in toughening SPI than NR but the tensile properties of SPI/ENR were also significantly higher than the corresponding compositions of SPI/NR. SPI/ENR green resin with higher toughness could be used as fully biodegradable thermoset resin in many applications including green composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44665.  相似文献   

15.
High‐performance ultraviolet (UV) curable polyurethane acrylate (PUA) coating alloyed with thermally curable polybenzoxazine (PBA) is developed. The hybrid polymer networks of PUA and PBA‐a were prepared by sequential cure methods, i.e., UV cure of the PUA followed by thermal cure of the PBA fraction. The effects of sequential cure were investigated in terms of mechanical, thermal, and physical properties of the resulting polymer alloys. The fully cured PUA/PBA‐a alloy films showed only single glass transition temperature (Tg) suggesting high compatibility between the two polymer networks, possibly of an interpenetrating polymer network type. The storage modulus in a glassy state and Tg of PUA/PBA‐a alloys were found to substantially increase with increasing PBA‐a content. Furthermore, degradation temperature at 10% weight loss of the PUA/PBA‐a alloy films was relatively high whereas the char yield at 800°C was found to increase with a PBA‐a component. Hardness was enhanced, whereas water absorption and water vapor permeation rate of the alloy were suppressed by the incorporation of the PBA‐a into the polymer alloys. As a consequence, the properties of UV curable PUA networks can be positively tailored and enhanced by forming hybrid network with PBA‐a. POLYM. ENG. SCI., 54:1151–1161, 2014. © 2013 Society of Plastics Engineers  相似文献   

16.
Study of the simultaneous interpenetrating polymer network (IPN) between diglycidyl ether of bisphenol-A (DGEBA) and unsaturated polyester (UP) was carried out at ambient temperature. Fourier transform infrared (FTIR) spectroscopy was employed to investigate the intermolecular H-bonding and functional group changes. Viscosity changes due to H-bonding and crosslinking were examined with a Brookfield viscometer. Gelation time was measured by a Techne gelation timer. Complexation between Co(II) (the promoter for UP cure) and diamine (the curing agent for DGEBA) was detected with UV-visible spectrometer. Experimental evidence revealed that intermolecular interactions were observed in systems such as DGEBA/UP, DGEBA/diamine, Co(II)/diamine, DGEBA/uncured UP, and UP/uncured DGEBA. All such interactions had measurable effects on the curing behaviors for both networks, as were indicated by the viscosity changes and gelation time. The IPNs thus obtained were further characterized with rheometric dynamic spectroscopy (RDS) and differential scanning calorimetry (DSC). Partial compatibility between UP and DGEBA networks was evidenced from a main damping peak with a shoulder near glass transition temperature (Tg) for lower UP content; while at higher UP content, only a main damping peak near Tg was observed. DSC revealed a broad glass transition for all IPNs. The resultant IPN materials were all transparent. © 1992 John Wiley & Sons, Inc.  相似文献   

17.
A norbornene-based cross-linker was synthesized and mixed at different loadings with two separate monomers for self-healing polymer applications: 5-ethylidene-2-norbornene (ENB) and endo-dicyclopentadiene (endo-DCPD). The monomer/cross-linker systems were polymerized by ring-opening metathesis polymerization (ROMP) with Grubbs' catalyst. The thermal-mechanical properties of the polymerized networks were evaluated by dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) and the curing process was monitored by parallel plate oscillatory rheometry. The viscosities of the pre-polymer blends are shown to be adequately low for self-healing, and exhibit a high ROMP reactivity to form cross-linked networks with enhanced thermal-mechanical properties. The addition of cross-linker increases the glass transition temperature (Tg) and the storage modulus both above and below Tg. The storage modulus increase above Tg is used to estimate the molecular weight (Mc) between entanglements or cross-link sites for both ENB and endo-DCPD-based networks. The cross-linker also greatly accelerates network formation as defined by the gelation time.  相似文献   

18.
A series of epoxy networks were synthesized in which the molecular weight between crosslinks (Mc) and crosslink functionality were controlled independent of the network chain backbone composition. The glass transition temperature (Tg) of these networks was found to increase as Mc decreased. However, the rate at which Tg increased depended on crosslink functionality. The dependency of Mc on Tg is well described by two models, one based on the concept of network free volume while the other model is based on the principle of corresponding states. Initially, neither model could quantitatively predict the effect of crosslink functionality in our networks. However, our tests indicated that both the glass transition and the rubbery moduli of our networks were dependent on Mc and crosslink functionality, while the glassy state moduli were independent of these structural variables. The effect of crosslink functionality on the rubbery modulus of a network has been addressed by the front factor in rubber elasticity theory. Incorporation of this factor into the glass transition temperature models allowed for a quantitative prediction of Tg as a function of Mc and crosslink functionality. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 387–395, 1997  相似文献   

19.
Crosslinked poly(methyl methacrylate) (PMMA-c), poly(carbonate-urethane) (PCU-c), poly(vinyl pyridine) (PVP-c), and full, simultaneous interpenetrating polymer networks (IPNs) based on the above polymers were characterized by precise heat capacity (Cp) measurements in the temperature interval 4.2–450 K. The raw values of Cp scaled with temperature (T) as CpTd with d = 2 and 5/3, as expected for a fracton-like vibration regime, in the temperature intervals 8–10 and 10–30 K, respectively. A single glass transition temperature (Tg) and two Tg's were observed for apparently homogeneous and microphase-separated IPNs, respectively. Judged by the positive sign of the excess Gibbs free energy, the apparently single-phase state of homogeneous IPNs is thermodynamically unstable; however, its kinetic stability is ensured by permanent topological constraints (network junctions) prohibiting the incipient phase separation.  相似文献   

20.
Smith KE  Sawicki S  Hyjek MA  Downey S  Gall K 《Polymer》2009,50(21):5112-4927
The purpose of this study is to evaluate how the toughness of photopolymerizable (meth)acrylate networks is influenced by physiological conditions. By utilizing two ternary (meth)acrylate networks, MA-co-MMA-co-PEGDMA and 2HEMA-co-BMA-co-PEGDMA, relationships between glass transition temperature (Tg), water content and state, and toughness were studied by varying the weight ratio of the linear monomers (MA to MMA or 2HEMA to BMA). Differential scanning calorimetry and thermogravimetric analysis were performed to evaluate the thermal behavior and water content as a function of either MA or 2HEMA concentration while tensile strain-to-failure tests were performed at 37 °C to determine network toughness. Both networks exhibited a maximum in toughness in PBS in the composition corresponding to a Tg close to the testing temperature. This toughness maximum was achieved by adjusting the glass transition temperature and/or hydrophilicity through changes in chemistry. These relationships may be utilized to design tough photopolymerizable networks for use in mechanically rigorous biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号