首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
This study reports the comprehensive observation of the influence of ambient pH on the changes of fly ash-based geopolymer in an aqueous solution at various time periods up to 720 days. The aim of the study was to find a relationship between ambient pH, the change of composition, the structural changes and mechanical properties. The results of XRF, NMR, XRD showed that, Na can still leach into solutions of pH ≤ 13. The percentage of Na2O decreased over time in solutions of pH ≤ 13, and the decreasing rate of the Na2O percentage increased at low pH. The structural changes still proceeded for specimens in water, the number of Al-O-Si bonds increased over time. The cleavage Si-O-Si stopped, when specimens were immersed in the solution of pH = 1(HCl) due to the fast leaching of Na to solution and neutralization. In a high pH environment (NaOH), the Al-O-Si bond was more consistent than the Si-O-Si bond. The phase change was recorded only in the solution of pH = 14 with the small amount of Na-P1 zeolite. Even though the chemical composition and structure of specimens changed over time, the mechanical properties of the geopolymer were quite stable even when specimens were immersed in solutions of extreme pH (pH = 1, 2 or up to pH = 14).  相似文献   

2.
Bond of ribbed galvanized reinforcing steel in concrete   总被引:2,自引:0,他引:2  
The ASTM beam end test (ASTM A944) has been used to compare the bond and slip behaviour of deformed (i.e. ribbed) galvanized, epoxy-coated and black steel bars in concrete. The objective was to determine whether galvanizing adversely affects bond strength. From a series of thirty specimens, the average bond strength of black steel and galvanized steel reinforcement used in these tests has been determined and bond stress has been shown to act uniformly over the embedded bar area. A slip value of approximately 0.4 mm has been confirmed to be associated with bond failure by concrete splitting. The results indicated that while epoxy coating resulted in a significant loss in bond strength of the order of 20% compared to black steel, there is no adverse effect on bond with the use of galvanized steel. Chromate treatment of galvanized bars is deemed unnecessary since there was no evidence of long term reduction in bond due to the possible effects of hydrogen gas evolution resulting from the reaction between zinc and wet concrete.  相似文献   

3.
This research focuses on elucidating the present knowledge gaps in geopolymer concrete's engineering properties, specifically its stress-strain behaviour. Geopolymer concrete (GPC) is an emerging alternative to ordinary Portland cement concrete (OPCC), and is produced via a polycondensation reaction between aluminosilicate source materials and an alkaline solution. As a relatively new material, many engineering properties of geopolymer concrete are still undetermined. In this paper, the compressive strength, modulus of elasticity and stress-strain behaviour of ambient and heat-cured GPC and OPCC have been studied experimentally. A total of 195 geopolymer concrete cylinders and 210 Portland cement concrete cylinders were tested for the above mentioned characteristics. Based on the experimental results, constitutive models describing the complete stress–strain behaviour in uniaxial compression have been developed for the low-calcium fly ash-based geopolymer concrete and the heat-cured Portland cement concrete.  相似文献   

4.
This paper investigates the enhancement of fly ash-based geopolymer with chitosan biopolymer. Unconfined compression and split tensile tests were carried out to investigate the effect of addition of small amount of N-carboxymethyl chitosan (0.05, 0.1, 0.15, and 0.2 wt% of fly ash) on the mechanical performance of fly ash-based geopolymer. Scanning electron microscopy (SEM) imaging was also conducted to study the microstructure of the chitosan enhanced fly ash-based geopolymer. The results indicated that the inclusion of N-carboxymethyl chitosan led to slight increase of the unconfined compressive strength and substantial increase of the tensile strength, the displacement at the peak tensile load and the pre-peak toughness, with the maximum increases at 0.1 wt% chitosan content. The SEM imaging indicated that the added N-carboxymethyl chitosan biopolymer coated and bridged the (geopolymerized) fly ash particles and led to the formation of a more condensed geopolymer network structure, thus enhancing the mechanical behavior of the geopolymer–biopolymer composite. However, when too much N-carboxymethyl chitosan was used, the excessive coating and encapsulation of un-reacted and partially hydrolyzed fly ash particles hindered their geopolymerization and adversely affected the mechanical behavior of the geopolymer–biopolymer composite.  相似文献   

5.
This paper summarizes the results of an experimental investigation into the bond behavior between recycled aggregate concrete (RAC) and deformed steel rebars, with the main variables being the recycled coarse aggregate replacement ratio (RCAr) and water-to-cement ratio of the concrete mixture. The investigation into splitting cracking strength indicates that the degradation of the bond splitting tensile stress of the cover concrete was affected by not only the roundness of the coarse aggregate particles but also the weak interfacial transition zone (ITZ) between the cement paste and the RCA that has a more porous structure in the ITZ than normal concrete. In this study, a linear relationship between the bond strength and the density of the RCA was found, but the high compressive strength reduced the effects of the parameters. To predict the bond strength of RAC using the main parameters, a multivariable model was developed using nonlinear regression analysis. It can be inferred from this study that the degradation characteristic of the bond strength of RAC can be predicted well, whereas other empirical equations and code provisions are very conservative.  相似文献   

6.
Geopolymer has been of great research interest as a material for sustainable development. As ordinary Portland cement, however, geopolymer exhibits brittle behavior with low tensile strength, ductility, and fracture toughness. This paper investigates the reinforcement of fly ash-based geopolymer with alkali-pretreated sweet sorghum fiber. The sweet sorghum fiber comes from the bagasse (residue), a waste after the juice is extracted from sweet sorghum stalks for ethanol production. Specifically, the unit weight of fly ash-based geopolymer specimens containing different contents of sweet sorghum fibers was measured. Unconfined compression, splitting tensile, and flexural tests were conducted to investigate the effect of incorporated sweet sorghum fiber on the mechanical properties of fly ash-based geopolymer. Scanning electron microscopy imaging was also performed to study the microstructure of the sweet sorghum fiber–geopolymer composite. The results indicate that the unit weight of the sweet sorghum fiber–geopolymer composite decreases with higher fiber content. Although the inclusion of sweet sorghum fiber slightly decreases the unconfined compressive strength, the splitting tensile, and flexural strengths as well as the post-peak toughness increase with the fiber content up to 2 % and then start to decrease. The splitting tensile tests also clearly show the transition from the brittle failure of the plain geopolymer specimen to the “ductile” failure of the geopolymer specimen containing sweet sorghum fiber.  相似文献   

7.
Fly ash-based geopolymer concrete: study of slender reinforced columns   总被引:2,自引:0,他引:2  
The objectives of this paper are to present the results of experimental study and analysis on the behaviour and the strength of reinforced geopolymer concrete slender columns. The experimental work involved testing of twelve columns under axial load and uniaxial bending in single curvature mode. The compressive strength of concrete for the first group of six columns was about 40 MPa, whereas concrete with a compressive strength of about 60 MPa was used in the other six columns. The other variables of the test program were longitudinal reinforcement ratio and load eccentricity. The test results gathered included the load carrying capacity, the load-deflection characteristics, and the failure modes of the columns. The analytical work involved the calculation of ultimate strength of test columns using the methods currently available in the literature. A simplified stability analysis is used to calculate the strength of columns. In addition, the design provisions contained in the Australian Standard AS3600 and the American Concrete Institute Building Code ACI318-02 are used to calculate the strength of geopolymer concrete columns. This paper demonstrates that the design provisions contained in the current standards and codes can be used to design reinforced fly ash-based geopolymer concrete columns.  相似文献   

8.
The early age compressive strength development of class C fly ash-based geopolymers under high pressure and high temperatures of curing is considered as an alternative to well cements. Uniaxial compressive strength (UCS) results show how the curing temperature affects the early compressive strength development. As the temperature rises from 87 to 125 °C, a consecutive reaction seems to take place at the higher concentrations of NaOH, which decrease the compressive strength at the higher temperature. The taken scanning electron microscope (SEM) images show a change in the morphology of the samples at 125 °C with the higher concentrations of NaOH. Ultrasonic cement analyzers (UCA) were employed to investigate the instantaneous strength development of the geopolymeric slurries. As the common cement models were not able to assess the compressive strength development, the custom algorithm option in the UCA software was applied. The developed empirical correlations were not able to accurately estimate the sonic strength of the slurries remarkably at 125 °C. The rheological measurements of the prepared geopolymeric slurries showed a Newtonian like behavior.  相似文献   

9.
10.
Fluidized bed coal combstion (FBC) is extensively used in small self-generation power plants. The fly ash obtained from this FBC process contains high quantity of calcium and sulfate compounds which hinders its use in the construction industry. In addition, its reactivity is low and additional source material or additive is, therefore, needed to increase the reaction. This research studied the use of Al(OH)3 and high concentrations of NaOH to control ettringite formation in the FBC fly ash geopolymer. Two replacement levels of 2.5 wt.% and 5.0 wt.% of Al(OH)3 and three NaOH concentrations of 10, 12 and 15 M were used in the study. Results indicated that the NaOH concentration affected the ettringite formation and strength of the FBC geopolymer. No ettringite was formed at high NaOH concentration of 15 M which helped the dissolution of calcium sulfate and formed the additional calcium hydroxide. The subsequent pozzolanic reaction led to strength gain of the geopolymer. For 15 M NaOH, the addition of 2.5 wt.% Al(OH)3 promoted the reaction and formed a dense matrix of alumino silicate compound. Relatively high 7-day compressive strength of 30 MPa was obtained.  相似文献   

11.
Fly ash based geopolymer is an emerging alternative binder to cement for making concrete. The cracking, spalling and residual strength behaviours of geopolymer concrete were studied in order to understand its fire endurance, which is essential for its use as a building material. Fly ash based geopolymer and ordinary portland cement (OPC) concrete cylinder specimens were exposed to fires at different temperatures up to 1000 °C, with a heating rate of that given in the International Standards Organization (ISO) 834 standard. Compressive strength of the concretes varied in the range of 39–58 MPa. After the fire exposures, the geopolymer concrete specimens were found to suffer less damage in terms of cracking than the OPC concrete specimens. The OPC concrete cylinders suffered severe spalling for 800 and 1000 °C exposures, while there was no spalling in the geopolymer concrete specimens. The geopolymer concrete specimens generally retained higher strength than the OPC concrete specimens. The Scanning Electron Microscope (SEM) images of geopolymer concrete showed continued densification of the microstructure with the increase of fire temperature. The strength loss in the geopolymer concrete specimens was mainly because of the difference between the thermal expansions of geopolymer matrix and the aggregates.  相似文献   

12.
In order to use geopolymer mortar as a pavement repair material, a splitting test and a slant shear test are performed to characterize the bond strength of the geopolymer and conventional cement mortar interfaces. Effect of curing time, degradation of the cement mortar under different acid conditions on the bond strength of geopolymer with conventional cement mortar, and comparison of the metakaolin geopolymer with other pavement repair materials are analyzed. It was found that curing time affects the interface bond strength greatly. Metakaolin geopolymer reaches 80% of its 28 day strength in 3 days curing, but shows low strength in 24 h curing. Curing temperature affects the strength of metakaolin geopolymer, however metakaolin geopolymer cured in ambient temperature and the bond strength of 3 days curing through splitting and slant shear tests reaches 3.63 MPa and 16.32 MPa, respectively. Degradation of cement mortar negatively affects the bond strength of geopolymer and conventional cement mortar. Possibility of using metakaolin geopolymer as a repair material is discussed by comparison of this experimental result with these of other repair materials.  相似文献   

13.
Use of fly ash based geopolymer as an alternative binder can help reduce CO2 emission of concrete. The binder of geopolymer concrete (GPC) is different from that of ordinary Portland cement (OPC) concrete. Thus, it is necessary to study the effects of the geopolymer binder on the behaviour of concrete. In this study, the effect of the geopolymer binder on fracture characteristics of concrete has been investigated by three point bending test of RILEM TC 50 – FMC type notched beam specimens. The peak load was generally higher in the GPC specimens than the OPC concrete specimens of similar compressive strength. The failure modes of the GPC specimens were found to be more brittle with relatively smooth fracture planes as compared to the OPC concrete specimens. The post-peak parts of the load–deflection curves of GPC specimens were steeper than that of OPC concrete specimens. Fracture energy calculated by the work of fracture method was found to be similar in both types of concrete. Available equations for fracture energy of OPC concrete yielded conservative estimations of fracture energy of GPC. The critical stress intensity factor of GPC was found to be higher than that of OPC concrete. The different fracture behaviour of GPC is mainly because of its higher tensile strength and bond strength than OPC concrete of the same compressive strength.  相似文献   

14.
This paper presents the bonding strength between the embedded rebar and substrate concrete by using geopolymer paste as the bonding agent. The determination of the suitable mix proportions of geopolymer paste as bonding agent was the main interest. Twelve different mix proportions of geopolymer paste by varying the amount of starting binder materials and alkaline concentration were prepared and tested for compressive and bonding strengths. The tested results indicated that both RHBA and SF incorporating with FA could be used in preparation of geopolymer paste. Mixes with SF gave the higher compressive and bonding strengths while the mixes with RHBA required the longer curing time. The bonding strengths of round bar and geopolymer pastes were slightly higher than that of control concrete (1.05–1.12 times) and there were significantly high in case of deformed bars (1.03–1.60 times). The ratios of bonding strength on the compressive strength were also presented. In comparison with commercial repair materials, the bonding strengths of geopolymer paste were higher than those of epoxies about 1.24–1.81 times. These tested results indicated that the bonding strengths using geopolymer paste were high enough and possibly used as bonding material for repair works. The mixtures containing high SF content and high NaOH concentrations were recommended to enhance both compressive and bonding strengths.  相似文献   

15.
In this paper, the basic properties viz., workability and strength of geopolymer mortar made from coarse lignite high calcium fly ash were investigated. The geopolymer was activated with sodium hydroxide (NaOH), sodium silicate and heat. The results revealed that the workable flow of geopolymer mortar was in the range of 110 ± 5%–135 ± 5% and was dependent on the ratio by mass of sodium silicate to NaOH and the concentration of NaOH. The obtained compressive strength was in the range of 10–65 MPa. The optimum sodium silicate to NaOH ratio to produce high strength geopolymer was 0.67–1.0. The concentration variation of NaOH between 10 M and 20 M was found to have a small effect on the strength. The geopolymer samples with high strength were obtained with the following practices: the delay time after moulding and before subjecting the sample to heat was 1 h and the optimum curing temperature in the oven was 75 °C with the curing duration of not less than two days.  相似文献   

16.
The manufacturing process of geopolymer cement generally uses alkaline solutions mixed with alumina-silicate prime materials to form a cement paste. Other factors may be set up for the designated experiment, e.g., material constituents, activator’s concentration and curing regimes. One of the latent factors influencing the properties of geopolymer, which has received less attention, is a mixing method. General mixing and separate mixing processes, which have been previously studied, were synthesized as controlled procedures and compared with another alternative new mixing method called the pre-dry mixing process. The results have shown that the pre-dry mixing process provided high potential heat liberation, which could prove beneficial for curing purposes. It is confirmed that the proper mixing order leads to better results, especially for any of the alkaline-activated cementitious binders. With more practicality in field application, by just adding water, this process could be developed and applied in ambient temperatures.  相似文献   

17.
In order to analyse the causes of unexpected failures occurred in steel ribbed bars used in the transportation of concrete slabs for maritime works purposes, a detailed study of the material’s properties has been carried out. Full mechanical, compositional, metallographic and fractographic analyses have been performed; complementary measurements of residual stresses by X-ray diffraction techniques and finite element modelling of the in-service conditions were decisive in casting some light on the problem. The combination of maritime environment exposure and high residual stress levels associated to severe bendings could be responsible for the characteristic stress corrosion cracking failures reported in the bars.  相似文献   

18.
19.
Geopolymers prepared from a class C fly ash (CFA) and a mixed alkali activator of sodium hydroxide and sodium silicate solution were investigated. A high compressive strength was obtained when the modulus of the activator viz., molar ratio of SiO2/Na2O was 1.5, and the proper content of this activator as evaluated by the mass proportion of Na2O to CFA was 10%. The compressive strength of these samples was 63.4 MPa when they were cured at 75 °C for 8 h followed by curing at 23 °C for 28 d. In FTIR spectroscopy, the main peaks at 1036 and 1400 cm?1 have been attributed to asymmetric stretching of Al–O/Si–O bonds, while those at 747 cm?1 are due to the Si–O–Si/Si–O–Al bending band. The main geopolymeric gel and calcium silicate hydrate (C–S–H) gel co-exist and bond some remaining unreacted CFA spheres as observed in XRD and SEM–EXDA. The presence of gismondine (zeolite) was also observed in the XRD pattern.  相似文献   

20.
The suitability of repairing Portland cement concrete with geopolymer mortars is explored as a viable way to replace Portland cement in concrete repairs and reduce their carbon footprint. Bond tests are performed through non-standard slant shear tests with variable bond plane inclination to assess concrete-geopolymer shear bond strength under different combinations of normal and shear stresses at the concrete-geopolymer interface. Interfacial cohesion and friction coefficients, two inherent mechanical properties of the substrate-repair interface, are extrapolated from experimental data and compared among different types of geopolymer repairs. The adoption of different curing temperatures for the geopolymer repair mortar (20°C and 45°C) and its reinforcement with various contents of Polyvinyl Alcohol fibers (volume fractions Vf = 0%, 0.5%, and 1%) are investigated to optimize the substrate-repair bond. Mechanical tests are supported by statistical analysis and microscope observation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号