首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact behaviors of nanoclay‐filled nylon 6 (nano‐nylon 6) blended with poly(acrylonitrile–butadiene–styrene) terpolymers (ABS) prepared through a twin screw mixing process were investigated here using metallocene polyethylene grafted maleic anhydride (POE‐g‐MA) as a compatibilizer to enhance the interface interaction. No clear effect of compatibilizer on the dispersion of clay and crystalline structure of nano‐nylon 6 has been observed. In view of morphology and rheological behaviors, the effect of compatibilizer on the mechanical properties could be elucidated. It is found that impact strength increases with the addition of compatibilizer at various ABS compositions. Similar effects are also observed with decreasing test temperature at the nano‐nylon 6/ABS blend composition of 80/20. As for thermal properties, the heat distortion temperature shows a marginal decrease in the nano‐nylon 6/ABS blends. Rheological behavior indicates that increased viscosity is found for the investigated compatibilized systems. Through morphology observations, the etched ABS particle sizes tend to decrease with the addition of compatibilizer for the blends, but are larger with higher contents of ABS concentrations. Those observations account for impact behaviors of the investigated blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1364–1371, 2006  相似文献   

2.
The impact behaviors of nanoclay filled nylon 6 (nano‐nylon 6) or nylon 6 blended with poly(acrylonitrile‐butadiene‐styrene) terpolymers (ABS) were investigated here using polybutadiene grafted maleic anhydride (PB‐g‐MA) as a compatibilizer to enhance interphase interaction. It is found that impact strength increases slightly for nano‐nylon 6/ABS blend system with the addition of compatibilizer at various ABS compositions, but increases to a certain degree for nylon 6/ABS case. Similar effects are also found with decreasing test temperature, especially at a blend composition of 80/20. These discrepancies are attributed to a different degree of available reaction sites from amine group on nano‐nylon 6 and nylon 6 as well as the rigidity of clay in deteriorating toughness. As for thermal properties, the heat distortion temperature shows marginally decrease in the nano‐nylon 6/ABS blend. Through morphology observations, the etched ABS particle sizes tend to decrease with the additions of compatibilizer for both blends, but are larger with higher contents of ABS concentrations. Those observations account for impact behaviors of the investigated blends. POLYM. ENG. SCI., 45:1461–1470, 2005. © 2005 Society of Plastics Engineers  相似文献   

3.
The objective of this research is to study the effect of using maleic anhydride‐grafted polyethylene‐octene elastomer (POE‐g‐MA) as a compatibilizer on nylon 6/acrylonitile‐butadiene‐styrene (ABS) copolymer blends. With POE‐g‐MA, nylon 6/ABS at a blending ratio of 80/20 showed an optimal result in modified impact property. Scanning electron microscopy (SEM) revealed that the particle sizes of ABS in the dispersed phase diminished as the amount of the added compatibilizer (POE‐g‐MA) increased. The compatibilizer reduced the surface tension between nylon 6 and ABS, thus increasing the compatibility of the two phases. Furthermore, studies of the rheological behavior of the system showed that the shear viscosity of nylon 6/ABS blends also increased with the introduction of POE‐g‐MA. Finally, dynamic mechanical analysis (DMA) experiments showed that adding POE‐g‐MA dramatically improved the impact strength of the blends at room temperature and low temperatures. Polym. Eng. Sci. 44:2340–2345, 2004. © 2004 Society of Plastics Engineers.  相似文献   

4.
In this study, commercially available epoxidized and maleated olefinic copolymers, EMA‐GMA (ethylene‐methyl acrylate‐glycidyl methacrylate) and EnBACO‐MAH (ethylene‐n butyl acrylate‐carbon monoxide‐maleic anhydride), were used at 0, 5, and 10% by weight to compatibilize the blend composed of ABS (acrylonitrile‐butadiene‐styrene) terpolymer and PA6 (polyamide 6). Compatibilizing performance of these two olefinic polymers was investigated from blend morphologies, thermal and mechanical properties as a function of blend composition, and compatibilizer loading level. Scanning electron microscopy (SEM) studies showed that incorporation of compatibilizer resulted in a fine morphology with reduced dispersed particle diameter at the presence of 5% compatibilizer. The crystallization behavior of PA6 phase in the blends was explored for selected blend compositions by differential scanning calorimetry (DSC). At high compatibilizer level a decrease in the degree of crystallization was observed. In 10% compatibilizer containing blends, formation of γ‐crystals was observed contrary to other compatibilizer compositions. The behavior of the compatibilized blend system in tensile testing showed the negative effect of using excess compatibilizer. Different trends in yield strengths and strain at break values were observed depending on compatibilizer type, loading level, and blend composition. With 5% EnBACO‐MAH, the blend toughness was observed to be the highest at room temperature. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 926–935, 2007  相似文献   

5.
Blends of polyamide6 (PA6) and acrylonitrile butadiene styrene (ABS) were prepared in presence or absence of up to 5 wt % of a reactive compatibilizer [styrene maleic anhydride copolymer (SMA) modified with 5 wt % multiwall carbon nanotubes (MWNT)] by melt‐mixing using conical twin screw microcompounder where the ABS content was varied from 20 to 50 wt %. The melt viscosity of the blends was significantly enhanced in presence of SMA modified by multiwall carbon nanotubes due to the reactive compatibilization, which leads to stabilized interphase in the blends. Furthermore, the presence of MWNT in the compatibilizer phase led to additional increase in viscosity and storage modulus. Morphological studies revealed the presence of either droplet‐dispersed or cocontinuous type depending on the blend compositions. Further, reactive compatibilization led to a significant change in the morphology, namely a structure refining, which was enhanced by MWNT presence as observed from SEM micrographs. DSC crystallization studies indicated a delayed crystallization response of PA6 in presence of ABS presumably due to high melt viscosity of ABS. The crystallization temperature and the degree of crystallinity were strongly dependent on the type of morphology and content of reactive compatibilizer, whereas the presence of MWNT had an additional influence. SAXS studies revealed the formation of thinner and less perfect crystallites of PA6 phase in the blends, which showed cocontinuous morphology. A unique observation of multiple scattering maxima at higher q region has been found in the blends of cocontinuous morphology, which was observed to be successively broadened in presence of the compatibilizer. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

6.
Blends of acrylonitrile-butadiene-styrene (ABS) and Nylon 6 (PA6) incorporating styrene-acrylonitrile-glycidyl methacrylate (SAGMA) copolymer as compatibilizer have been studied across five different compositions by varying the PA6 ratio from 15 wt% to 55 wt%. The evolution of morphology from discrete dispersed PA6 particles to phase inversion to co-continuous phases effected due to the compatibilizer have been studied vis-à-vis preliminary melt flow analysis, viscoelastic behavior, physico-mechanical and thermal properties of the blends. Single point viscosity measurements during melt flow analyses are indicative of a significant increase in viscosity upon initial incorporation of PA6 followed by narrow increases with content. It is observed that while there are gradual positive modifications in physico-mechanical properties with increasing PA6 content, the most significant improvements are observed for room temperature izod impact strength and break elongation effected in the region of phase inversion on to the formation of a co-continuous phase. The low temperature impact strength at −40 °C essentially remains comparable to that of control ABS. DMTA analysis evidences partial dissolution of the blend components by the shifts of the damping peaks (Tg) of PB rich phase, SAN and PA6. Broadening of the damping peak of PB rich phase of ABS is attributed to increasing interfacial region due to PA6-g-SAGMA molecular layer at the interface. Thermal stability of the blends were not significantly affected in comparison to control ABS and PA6.  相似文献   

7.
The melting and crystallization behaviors of poly(trimethylene terephthalate) (PTT)/acrylonitrile–butadiene–styrene (ABS) blends were investigated with and without epoxy or styrene–butadiene–maleic anhydride copolymer (SBM) as a reactive compatibilizer. The existence of two separate composition-dependent glass-transition temperatures (Tg's) indicated that PTT was partially miscible with ABS over the entire composition range. The melting temperature of the PTT phase in the blends was also composition dependent and shifted to lower temperatures with increasing ABS content. Both the cold crystallization temperature and Tg of the PTT phase moved to higher temperatures in the presence of compatibilizers, which indicated their compatibilization effects on the blends. A crystallization exotherm of the PTT phase was noticed for all of the PTT/ABS blends. The crystallization behaviors were completely different at low and high ABS contents. When ABS was 0–50 wt %, the crystallization process of PTT shifted slightly to higher temperatures as the ABS content was increased. When ABS was 60 wt % or greater, PTT showed fractionated crystallization. The effects of both the epoxy and SBM compatibilizers on the crystallization of PTT were content dependent. At a lower contents of 1–3 wt % epoxy or 1 wt % SBM, the crystallization was retarded, whereas at a higher content of 5 wt %, the crystallization was accelerated. The crystallization kinetics were analyzed with a modified Avrami equation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
The thermal, mechanical, and water absorption properties of blends of nylon 6 (PA6) and acrylonitrile‐butadiene‐styrene copolymer (ABS) with and without the compatibilizer maleic anhydride (MAH) were studied. Polymers were melt‐blended using a twin screw extruder, and injection molded into sheets. Tensile and impact properties, hardness, heat deflection resistance, and dimensional stability were enhanced by the incorporation of MAH. Synergistic effects were observed for tensile elongation and flexural properties. The melting temperature and the thermal stability were not significantly affected by the incorporation of MAH. The mechanical property enhancement by the introduction of compatibilizer was explained by the formation of a micro‐domain structure in the blends. The equilibrium water uptake increased with increasing concentration of PA6, and the diffusion coefficient was determined from the water transport kinetics at different temperatures. Activation energy was extracted from the temperature dependence of the diffusion coefficient. No compatibilizer effect was observed in the swelling behavior.  相似文献   

9.
Noncompatibilized and compatibilized ABS–nylon1010 blends were prepared by melt mixing. Polystyrene and glycidyl methacrylate (SG) copolymer was used as a compatibilizer to enhance the interfacial adhesion and to control the morphology. This SG copolymer contains reactive glycidyl groups that are able to react with PA1010 end groups ( NH2 or  COOH) under melt conditions to form SG‐g‐Nylon copolymer. Effects of the compatibilizer SG on the rheological, thermal, and morphological properties were investigated by capillary rheometer, DSC, and SEM techniques. The compatibilized ABS–PA1010 blend has higher viscosity, lower crystallinity, and smaller phase domain compared to the corresponding noncompatibilized blend. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 683–688, 1999  相似文献   

10.
Phase morphology and rheological behavior of polyamide 6 (PA6)/acrylonitrile butadiene styrene (ABS) polymers blends was studied using scanning electron microscopy and rheometry. The results showed that the phase morphology and rheological properties depends on blend composition. We evaluated the effect of addition of ABS as dispersed phase and EnBACO‐MAH (ethylene n‐butyl acrylate carbon monoxide maleic anhydride) as a compatibilizer on the morphological and rheological behaviors of PA6/ABS blends. It was concluded that there is a good agreement between the results obtained from rheological and morphological studies. As a consequence, addition of the ABS and compatibilizer weight percent led to a significant change in morphological structure and a great mounting in the viscosity as well as the elasticity. The rheological properties results demonstrate that adding compatibilizer to polymer blends led to increasing the crossover point, which shows a transition from a high viscous to a considerably more elastic behavior. Also, the slow transition of relaxation time peak from the peak of the PA6 to the peak of the ABS implies increasing the miscibility of the PA6/ABS blend components by increasing compatibilizer content. In addition, the Carreau–Yasuda model was used to extract information on rheological properties (zero shear viscosity and relaxation time) for PA6/ABS/EnBACO‐MAH blends by fitting the experimental data with this model. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
A series of glass fiber‐reinforced rubber‐toughened nylon 6 composites was prepared. The mechanical properties and morphology of the composites toughened with ABS were investigated and compared with composites toughened with EPR‐g‐MA. A study of the mechanical properties showed that the balance of the impact strength and stiffness for both types of systems can be significantly improved by proper incorporation of glass fibers into toughened nylon 6. The differences between these two types of rubber‐toughened composites are significant at a high rubber content. However, the ductility of both composites toughened with rubber was significantly lower than that of blends without glass fiber. The relationships between rubber content, nylon 6 molecular weight, compatibilizer, processing, and mechanical properties are discussed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 484–497, 2001  相似文献   

12.
永久抗静电PA6/ABS材料的制备   总被引:1,自引:0,他引:1  
采用双螺杆挤出的方法将永久型抗静电母粒与尼龙(PA)6、(丙烯腈/丁二烯/苯乙烯)共聚物(ABS)熔融共混,制得永久型抗静电PA6/ABS材料.研究表明,适量马来酸酐接枝ABS的加入,可以显著提高ABS和PA6的相容性;随着永久型抗静电母粒用量的增加,PA6/ABS合金材料的表面电阻率明显下降,20%~30%的抗静电母粒可使PA6/ABS材料的表面电阻率达到1×107~1×108Ω,一年之后仍保持为1×108Ω,具有永久抗静电性能;抗静电PA6/ABS材料具有优异的可染色性.  相似文献   

13.
The paper consides the effects of compatibilization with maleic anhydride grafted polypropylene (PP-g-MAH) on the propertie of immiscible blends of polypropylene (PP) and nylon 6 (N6). We prepared the blends by three different mixing processes; single-step blending, two-step blending with reactive premixing, and two-step blending with nonreactive premixing, to determine the effective mixiing process for fine morphological structure thermal stability, and mechanical properties. Dynamic melt reheological properties were measured to examine the modification of elastic properties by the compatibilizer. In addtion, thermal analysis was also carried out to detect the change in crystallization and thereby to probe the degree of compatibilizaton. The results show that compatibilized blends prepared by teh single-step process exhibit improved phase morphology, thermal stability, and mechanical properties for dried conditions, compared with other blend types. Finally, the water absorption test indicates that the added compatibilizer yields enhanced water resistance in spite of the strong intrinsic hydrophilicity of N6. In particular, two-step blending with reactive premixing is most effective in improving water resistance and reducing degradation of mechanical properties after moisture absorption.  相似文献   

14.
The thermal behavior and morphology of multicomponent blends based on PA6, polyamide 6 (PA6)/styrene–acrylonitirle copolymer (SAN), PA6/acrylonitrile–butadiene–styrene terpolymer (ABS), and their compatibilized blends with styrene–acrylonitrile–maleic anhydride copolymer (SANMA) were studied using DSC and SEM. The blends were prepared in a twin‐screw extruder under similar processing conditions, keeping the PA6 content fixed at 50 wt %. It was found that, in all the blends, the second component had a nucleating effect and improved the overall degree and rate of crystallization of PA6, whereas addition of a compatibilizer slightly diminished these effects and resulted in significant changes in the blend morphology. The nucleating effect and consequent changes in the crystallization behavior was attributed to the presence of SAN, which is a common component in all the blends. The Tg of PA6 in the blends with a cocontinuous morphology, due to the connectivity between the phases, is higher than in the blends with a disperse‐type morphology. The compatibilized blends have a lower crystallization rate and nucleation ability with a cocontinuous morphology, whereas the uncompatibilized blends have a higher crystallization rate with a higher nucleation ability and a disperse and/or a coarse cocontinuous morphology. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2753–2759, 2002  相似文献   

15.
Multicomponent compatibilized blends of polyamide 6 (PA6) and styrene-butadiene-acrylonitrile (ABS) with co-continuous morphology are among commercial alloys with an interesting combination of properties. To further enhance the properties different amounts of nanoclay were incorporated into these blends through a one step melt mixing process. The effect of nanoclay addition on rheological, thermal stability, crystallization and morphological properties of the nanocomposites were investigated and compared with those of the neat blends. The nanoscale dispersion of the clay layers in the blends were confirmed through X-ray diffraction and transmission electron microscopy methods. Rheological investigation indicated an increased viscosity and melt elasticity for the nanocomposite systems. The viscosity of nanocomposites followed a shear thinning flow behavior and decreased with increasing shear rates. The changes in the rheological properties were accompanied by refinement of the co-continuous morphology. For thermal degradation under N2 atmosphere, the onset and maximum of degradation temperatures for the nanocomposites were as high as the neat blends, while significant improvement in thermal stability (about 60 °C by 3 wt% clay addition) was observed in the air environment. In addition agglomerated clay particles did not significantly affect thermal stability of the polymer matrix. Non-isothermal crystallization results indicated that the clay layers had a retarding effect on the crystal growth rate and facilitated the formation of α crystalline form. In addition no nucleation effect was observed during the crystallization process due to incorporation of nanoclay into the blends.  相似文献   

16.
The effect of simultaneous addition of multiwall carbon nanotubes (MWNTs) and a reactive compatibilizer (styrene maleic anhydride copolymer, SMA) during melt‐mixing on the phase morphology of 80/20 (wt/wt) PA6/ABS blend has been investigated. Morphological analysis through scanning and transmission electron microscopic analysis revealed finer morphology of the blends in presence of SMA + MWNTs. Fourier transform infrared spectroscopic analysis indicated the formation of imide bonds during melt‐mixing. Non‐isothermal crystallization studies exhibited the presence of a majority faction of MWNTs in the PA6 phase of 80/20 (wt/wt) PA6/ABS blend in presence of SMA + MWNTs. Rheological analysis, dynamic mechanical thermal analysis, and thermogravimetric analysis have demonstrated the compatibilization action of simultaneous addition of a reactive compatibilizer (SMA copolymer) and MWNTs in PA6/ABS blends. An attempt has been made to investigate the role of simultaneous addition of SMA copolymer and MWNTs on the morphology of 80/20 (wt/wt) PA6/ABS blend through various characterization techniques. POLYM. ENG. SCI., 55:457–465, 2015. © 2014 Society of Plastics Engineers  相似文献   

17.
尼龙6增韧研究进展   总被引:11,自引:0,他引:11  
综述了用聚烯烃、橡胶弹性体、无机刚性粒子及ABS等对尼龙6进行增韧的研究进展情况,其中以聚烯烃、橡胶弹性体的应用最为广泛,但需要一定的相容剂;而无机刚性粒子增韧则是一种较新的增韧方法,可以在提高材料韧性的同时,提高材料的拉伸强度;ABS与尼龙6共混可获得较理想的综合性能。  相似文献   

18.
The ductile–brittle transition temperatures were determined for compatibilized nylon 6/acrylonitrile‐butadiene‐styrene (PA6/ABS) copolymer blends. The compatibilizers used for those blends were methyl methacrylate‐co‐maleic anhydride (MMA‐MAH) and MMA‐co‐glycidyl methacrylate (MMA‐GMA). The ductile–brittle transition temperatures were found to be lower for blends compatibilized through maleate modified acrylic polymers. At room temperature, the PA6/ABS binary blend was essentially brittle whereas the ternary blends with MMA‐MAH compatibilizer were supertough and showed a ductile–brittle transition temperature at ?10°C. The blends compatibilized with maleated copolymer exhibited impact strengths of up to 800 J/m. However, the blends compatibilized with MMA‐GMA showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2643–2647, 2003  相似文献   

19.
Recent work has shown that nylon 6/acrylonitrile–butadiene–styrene (ABS) blends can be made tough by the addition of some polymer additives that are chemically reactive with nylon 6 and physically compatible with the styrene-acrylonitrile copolymer (SAN) phase of ABS. Imidized acrylic polymers (IA) represent a successful example of such additives that improve the dispersion of ABS in the nylon 6 matrix and render the blends tough. This article examines the possibility of toughening nylon 6 with ethylene/propylene/diene elastomer grafted with SAN copolymer (EPDM-g-SAN). This EPDM-g-SAN consists of 50% rubber and 50% SAN by weight. However, it was found that the same IA that works well to disperse ABS materials of similar rubber content is not as effective for EPDM-g-SAN, primarily because the EPDM forms the continuous phase, not SAN, and, thus, interfaces with nylon 6 during melt blending. Maleated elastomers like maleic anhydride grafted ethylene–propylene copolymer (EPR-g-MA) and styrene–(ethylene-co-butylene)–styrene triblock copolymer (SEBS-g-MA) were more effective for dispersing EPDM-g-SAN in the nylon 6 matrix than IA. Various mechanisms that improve the dispersion are discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
This article describes the crystallization behavior of polypropylene (PP) in the presence of a crystallizable polymer, namely, nylon 6, in the binary blend of PP/nylon 6 in the composition range from 0 to 30 wt % of nylon 6 content in the blend. The crystallization behavior was studied through variation of the crystallinity with the blend composition and changes in the crystallization exotherms were recorded by differential scanning calorimetry (DSC) and the spherulite morphology was observed via polarized light microscopy (PLM). Comparison of the crystallization exotherms and melting endotherms revealed some differences which are attributed to the role of a sufficiently high thermal energy of the nylon 6 crystals on the melting of PP. The crystallinity of PP decreased in the presence of nylon 6, whereas the crystallinity of nylon 6 increased considerably in the presence of PP. The rate of nucleation of PP on addition of nylon 6 decreased rapidly in the region 0–10 wt % nylon 6 content, and, thereafter, at a higher nylon 6 content, decrease of the nucleation rate was relatively slow. PLM observation revealed the presence of composite spherulites with PP spherulites grown on the surface of the already‐formed nylon 6 spherulites. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1153–1161, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号