首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
用PV4A测速仪和CFD数值模拟的方法对液-固流化床内滤料(固体颗粒)的流动行为进行了研究,得出了流化床内滤料的流场分布状况.试验结果表明:流化床中铜锌合金(KDF)滤料的运动速度和固含率随流化床高度的增加分别呈现出先上升后下降的趋势;而沿径向从中心至管壁则呈下降趋势.模拟结果显示的固相运动速度和体积分率的轴径向分布趋势与试验测定结果基本吻合.  相似文献   

2.
邓林  孔建国  王一平  刘俊杰  朱丽 《化工进展》2006,25(Z1):292-297
在二维中试循环流化床中使用组合式固液分布器进行实验,考察下管箱表观液速,主分布器内径、主分布器下插深度,颗粒加入量和粒径对径向管束固含率的影响.结果表明:固含率随主分布器内径、颗粒加入量和下管箱表观液速的增加而增大,随粒径的增大而减小,随主分布器下插深度几乎没有变化;固含率不均匀度随颗粒粒径的增大而增大,随下管箱表观液速、颗粒加入量,主分布器下插深度增加而减小,但达到一定深度后,不均匀度不再随之减小,随主分布器内径几乎没有变化.在综合考虑各影响因素的基础上,提出计算固含率的经验公式,并用实验数据拟合了公式中的参数.  相似文献   

3.
在耦合流化床反应器大型冷模实验装置上,考察了不同表观气速下FCC颗粒在耦合流化床内截面平均密度的轴向分布. 结果表明,反应器轴向固含率可分为底部流化床区域和上部提升管区域. 前者的密相区平均固含率随表观气速增大而减小;后者的平均固含率随表观气速Ug增大而增大,Ug<0.58 m/s时固含率分布均匀,Ug=0.70~1.04 m/s时提升管出口出现约束返混区(>8.62 m),Ug>1.16 m/s时提升管底部出现密度重整区(3.82~4.57 m)、加速平稳区(4.57~8.62 m)和出口返混区(>8.62 m). 确定了耦合反应器内提升管区域截面平均固含率的影响参数,并利用实验数据回归了平均固含率的轴向分布经验模型,计算值与实验值吻合较好.  相似文献   

4.
在一套新型液固提升管-流化床组合反应器中,以水-玻璃珠为液-固体系,对f500 mm′4000 mm的液固流化床反应器内不同高度颗粒固含率的径向分布进行了实验,考察了表观液速和颗粒循环速率操作条件对颗粒固含率径向分布的影响. 实验表明,液固流化床内流动区域在轴向上可以划分为分布器影响区、过渡区和均匀流化区,径向上可以划分为中心区和环隙区. 这种分布特征主要取决于分布器的结构、尺寸及其流化介质. 本工作还对液固流化床与气固喷动床的三区流动结构进行了比较.  相似文献   

5.
在水平管液固循环流化床的实验装置上,利用CCD图像采集与处理系统对不同操作条件下惰性固体颗粒在管中的浓度分布进行了测量。利用浓度分布不均匀度的概念,定量地描述浓度分布的不均匀程度。在此基础上,提出了颗粒浓度分布的经验计算式。  相似文献   

6.
聂向锋  卢春喜  蓝兴英 《化工学报》2008,59(6):1366-1376
在φ80 mm×8000 mm的液固循环流化床提升管中,利用实心玻璃珠和常温水,采用实验和数值模拟相结合的方法对高密度液固循环流化床的流动特性进行了考察。实验发现,高密度液固提升管中,颗粒固含率和颗粒速度径向分布均为抛物线分布,轴向平均固含率分布总体上为下浓上稀的波动形式分布,颗粒在提升管中的流动表现出加速-减速-再加速直至充分发展的过程。这种分布特征与较高颗粒浓度、较高表观液速和颗粒循环速率及喷管式液体分布器的影响有关。液固提升管中固体颗粒的停留时间分布曲线均为尖而窄、较对称且没有明显拖尾的单峰分布,这表明颗粒基本是以弥散颗粒形式存在,颗粒停留时间分布较为均匀。通过将数值模拟结果与实验结果进行比较发现,模拟值与实验值吻合较好,说明所建立的数学模型较为合理,进一步通过数值模拟实验对颗粒密度和颗粒粒径对流动特性的影响规律进行了考察。  相似文献   

7.
低固含率气-液-固循环流化床流动特性   总被引:1,自引:0,他引:1       下载免费PDF全文
应用基于互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)传感器的高速图像采集和处理技术,实验研究了低固含率条件下,低密度大孔吸附树脂固体颗粒气-液-固三相循环流化床的流体力学行为,分析了操作条件、液相物性、颗粒性质等对床内的固体颗粒循环速率、相含率、气泡运动等特性的影响,得到了具有合理物理解释的实验数据和结果。  相似文献   

8.
基于欧拉-欧拉双流体模型,数值模拟倒置液固流化床内液固两相流动行为.数值模拟预测了床内颗粒的速度、浓度分布以及空隙率的变化.研究结果表明颗粒在床内分布呈现非均匀分布,床内形成局部高空隙率的流体团;随着床层高度增加,颗粒轴向速度增大:数值模拟床内空隙率与Renganthan等的实验结果相吻合.  相似文献   

9.
气-液-固三相循环流化床局部相含率分布   总被引:2,自引:0,他引:2       下载免费PDF全文
应用自行开发的微电导探针测试技术,以玻璃珠(dp=0.48 mm, ρs=2460 kg&#8226;m-3)和苯乙烯颗粒(dp=1.45mm,ρs=1264 kg&#8226;m-3)为固相,空气为气相,水及0.05%、0.20% (质量)SCMC(羧甲基纤维素钠)水溶液为液相,对三相循环流化床(TCFB)的各相局部含率进行了同时测定.考察了不同表观液体速度、辅助液体速度、液体黏度及颗粒密度对局部相含率轴径向分布的影响. 在不同操作条件下,获得了1286套局部相含率实验数据. 给出了局部固含率和局部气含率与操作条件、流体物性及床层轴径向位置的关联式,关联式的计算值与实验值吻合较好.  相似文献   

10.
耦合流化床提升管内固含率径向分布及沿轴向的发展   总被引:2,自引:0,他引:2  
针对催化汽油辅助反应器改质降烯烃工艺,结合提升管与流化床的特点,建立了一套提升管与流化床耦合反应器大型冷态实验装置. 在不同操作条件下,采用PV-4A型光纤密度仪测定了提升管内固含率沿径向的分布规律. 结果表明,固含率径向分布整体上呈现中心小、边壁大的环-核结构分布特征;沿轴向向上,各径向位置上的固含率在颗粒加速区逐渐降低,在充分发展区趋于稳定,在颗粒约束返混区又有所升高;各径向位置上的固含率随表观气速增大或颗粒循环强度减小而减小,且均匀性变好;提升管上部流化床内颗粒静床高度只对颗粒约束返混区内固含率径向分布有影响,而对颗粒加速区和充分发展区的固含率径向分布影响较小;当表观气速较低或颗粒循环强度较大时,颗粒约束返混区上部局部固含率最大值出现在无因次半径f=r/R=0.7附近,此时局部无因次固含率es*=es/ 沿轴向在H>5.33 m时不再具有相似性;通过比较径向不均匀指数,得到轴向各区固含率径向分布趋于均匀的程度依次为:充分发展区>颗粒约束返混区>颗粒加速区. 利用实验数据回归出了局部固含率径向分布关联式,其平均相对误差在6%以内.  相似文献   

11.
12.
Ionic mass transfer coefficients between the wall and a liquid fluidized bed of 0.043 inch lead glass spheres have been measured using the diffusion controlled reduction of ferricyanide ion at a nickel cathode. The coefficients obtained are correlated in terms of the dimensionless j factor and are compared with dissolution mass transfer results by this author and with a recent liquid fluidized bed heat transfer study(1) with these same particles. It is concluded that in the dissolution study either mechanical erosion or roughness effects or both were present. No analogy was found to exist between overall heat and mass transfer in a liquid fluidized bed in which there is a large difference between the Schmidt and Prandtl numbers because the dominant resistance is different for the two cases.  相似文献   

13.
14.
Wall-to-bed heat transfer in liquid fluidized beds, particulately and aggregatively fluidized, was studied. Glass particles fluidized with water gave particulate fluidization and lead particles with water gave aggregative fluidization. Local heat transfer coefficients and bed temperature profiles were measured. Heat transfer coefficients were found to be strongly dependent on particle size and porosity and increased with increasing particle size, but were independent of the height of the heater surface from the grid. Any variations in local bed properties, such as porosity do not affect wall-to-bed heat transfer. The heat transfer coefficients show a characteristic, maximum at porosities near 0.7 for both systems. Bed temperature profiles deviate considerably from open-pipe values.A two-resistance model for the heat transfer resistance agrees well with the data. Bed resistance is modeled by a radial eddy diffusivity, which indicates the mixing effectiveness in the core of the bed. Glass beds (particulate) show a maximum mixing effectiveness at porosities near 0.7 and the mixing effectiveness increases with particle diameter. Lead beds (aggregative) show two maxima in mixing effectiveness, the first between porosities of 0.5 and 0.6, and the second between porosities of 0.7 and 0.8. Mixing is greatest at an intermediate particle size in the case of lead beds. In both systems the fraction of the total resistance in the bed core increases as porosity decreases towards packed bed conditions.  相似文献   

15.
流化床内颗粒流体两相流的CFD模拟   总被引:6,自引:2,他引:4  
张锴 《化工学报》2010,61(9):2192-2207
采用先进的CFD模拟技术分析流化床内两相复杂体系的非线性流体动力学特征已得到普遍认同,但是由于不同研究者对颗粒与颗粒以及颗粒与流体之间相互作用力认识的差异,导致欧拉-欧拉框架下动量守恒方程的不同表达形式。本文在总结文献中有关颗粒黏性力、固相压力和两相间作用力的基础上,从双流体理论出发,提出了一个考虑拟平衡态下固体颗粒对流体相和固相动量守恒方程均有影响的简捷流体动力学模型。该模型的主要特点是表征颗粒离散属性的特征长度视为颗粒直径的同一数量级。随后在CFX4.4商业化软件平台上通过增加用户自定义子程序,对网格尺度、时间步长和最大颗粒堆积率的无关性进行检验,介绍了作者近年来采用该模型模拟二维/三维流化床内液固体系的散式流态化、气固Geldart A类物料的散式/聚式流态化和床层塌落特性以及Geldart B/D类物料的鼓泡/射流流态化和床层塌落的研究进展。模拟的主要结果与经典理论、本研究实验和文献报道数据相一致,说明该模型可以用来预测流化床内密相颗粒流体体系的动力学特性。  相似文献   

16.
The mass transfer data measured in the liquid fluidized beds of ion exchange resins in the Reynolds number range 0.22–6.4 are presented. A comparison was made between the experimental results and the values predicted by the recent theory of Nelson and Galloway and by the modified theory proposed by Rowe. The observed change of exponent on Reynolds number is predicted by the theory of Nelson and Galloway, but this theory fails to predict the correct dependance of Sherwood number of voidage. The modified theory proposed by Rowe predicts successfully the mass transfer coefficients at very low Reynolds number and in addition it predicts also approximately the Reynolds number region in which the change of exponent on Reynolds number is observed, but it fails to predict the correct dependance of Sherwood number on voidage in this region.  相似文献   

17.
A direct, non-disturbing flash photolysis dye technique has been used to measure liquid velocities in 2.465-in. beds of 0.1248, 0.233 and 0.368-in. diameter lucite spheres at porosities of 0.8 and 0.9. Aggregative fluidization, including layering, was observed in all beds, and increased in magnitude with the larger spheres. Distinct velocity maxima were found from 0.5 to 2 particle diameters from the wall and distinct minima at from 0.6 to 1.2 particle diameters for the more particulately fluidized beds. Variations in velocity greater than the mean were observed. Conservatively estimated wall shear stresses were 2 to 5 times times larger than in the open pipe.  相似文献   

18.
The conventional drag model in two‐fluid simulation, which assumes uniform particle distribution in a computational grid, overestimates the drag force, thus failed in capturing the subgrid‐scale strands and resolvable‐scale clusters. This work proposed a new modification to the conventional drag model through considering the heterogeneous distribution of solid volume fraction (SVF), especially, in the inter‐phase boundary (i.e., cluster boundary). The resulting drag model is a function of particle Reynolds number, SVF and the gradient of SVF. This straightforward modification is consistent with the elaborately filtered‐approach‐based modification method in nature. A CFD simulation for a two‐dimensional riser was conducted to validate the new drag model. The outlet solid mass flux, axial and radial time‐averaged voidages from the new drag model agreed well with the experimental measurements, and these results were far better than those from the conventional homogeneous drag models. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2588–2598, 2017  相似文献   

19.
Measurements of the electrical conductivity, k, of fluidized beds have been extended to cover the full range of conductivity ratio of the two phases, α, and a wide range of dispersed phase volume fraction, f. The Maxwell relation is shown to hold adequately provided α and f are not both high, when all available theories may greatly underestimate the value of k. The results can be applied to describe thermal conductivity and diffusion in composite systems, provided that convective effects can be neglected.  相似文献   

20.
CFD simulation of gas solid flow in FCC strippers   总被引:3,自引:0,他引:3  
In this paper, the hydrodynamic characteristics in bubbling fluidized beds (FCC Strippers) were simulated by using computational fluid dynamics (CFD) code (Fluent 6.2.16). The modified Gidaspow drag model based on the effective mean diameter of the particle clusters predicted the expected bubbling fluidization behavior and bed expansion. Compared with the bed densities of in the empty-cylinder stripper, bed densities in the V-baffled stripper were at the superficial gas velocity of 0.10-0.20 m/s. The overall trend of the time-averaged bed density at various superficial gas velocities were in agreement with the experimental data. The results illustrated that internal baffles had an important effect on the fluidization hydrodynamics. Internal baffles improved break-up and redistribution of bubbles and intensified the gas-solid contact. The simulation results also indicated that appropriate modification of the internal configuration eliminated the dead flow region in the strippers, and enhanced the gas-solid mixing remarkably, showing benefit for the mass and heat transfer in the fluidized bed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号