共查询到20条相似文献,搜索用时 15 毫秒
1.
Xiao Yaqi Luan Xiaowen Wang Xi He Guoqiang Qu Xin Deng Shan Liu Kaiyang Qian Jinghang Chen Xiuli Zhou Huanfu 《Journal of Materials Science: Materials in Electronics》2022,33(27):21512-21518
Journal of Materials Science: Materials in Electronics - Sr1?+?xNd2Al2O7?+?x (0?≤?x?≤?0.04) ceramics were prepared using a more concise... 相似文献
2.
Xiangquan Jiao Chaowei Zhong Shuren Zhang Xingshu Liu Bo Li 《Journal of Materials Science》2010,45(12):3331-3335
Besides the applications as optical functional materials, tellurium oxides also have attracted interest as microwave dielectric
materials. Most TeO2-based binary and ternary system have large negative temperature coefficient of resonant frequency (τf), which is not compatible for the low-temperature cofired ceramic. To compensate τf close to zero, two single-phase predecessors of BaTe4O9 and TiTe3O8 are synthesized in air at 530–560 and 620–680 °C, respectively. The two predecessors show exceptional dielectric properties
and their τf are opposite. The BaO–TiO2–TeO2 ternary system compounds are investigated by adjusting the ratio of BaTe4O9 and TiTe3O8 and sintered at 520–580 °C to develop the microwave properties and compensate the τf. After sintered at 560 °C, the ceramic sample with the composition of 0.47BaTe4O9–0.53TiTe3O8 exhibits a dielectric permittivity of 28, a Q × f-value of 12,200 GHz, and a τf of 4.0 ppm/°C measured at 10 GHz. 相似文献
3.
The influence of SrO (0·0–5·0 wt%) on partial substitution of alpha alumina (corundum) in ceramic composition (95 Al2O3–5B2O3) have been studied by co-precipitated process and their phase composition, microstructure, microchemistry and microwave dielectric
properties were studied. Phase composition was revealed by XRD, while microstructure and microchemistry were investigated
by electron-probe microanalysis (EPMA). The dielectric properties by means of dielectric constant (ε
r
), quality factor (Q × f) and temperature coefficient of resonant frequency (τ
f
) were measured in the microwave frequency region using a network analyser by the resonance method. The addition of B2O3 and SrO significantly reduced the sintering temperature of alumina ceramic bodies to 1600 °C with optimum density (∼ 4g/cm3) as compared with pure alumina powders recycled from Al dross (3·55g/cm3 sintered at 1700 °C). 相似文献
4.
Changyong Liu Dongyun Guo Chuanbin Wang Qiang Shen Lianmeng Zhang 《Journal of Materials Science: Materials in Electronics》2012,23(3):802-806
Bi4-xNdxTi3O12 (BNT-x, x = 0, 0.25, 0.50, 0.75 and 1.0) thin films were prepared on Pt/Ti/SiO2/Si substrates by a sol–gel method. The microstructure, ferroelectric and dielectric properties of BNT-x thin films were investigated. The single-phase BNT-x thin films were obtained. With increasing Nd content, the preferred orientation changed from random to (117) and surface morphologies changed from the mixture of rod- and plate-like grains to rod-like grains. The Nd substitution improved the ferroelectric and dielectric properties of BTO films. BNT-x films showed better electrical properties at x = 0.50—1.0. BNT-0.75 film exhibited the best electrical properties with remanent polarization (2P r) of 26.6 μC/cm2, dielectric constant (ε r) of 366 (at 1 MHz), dielectric loss (tanδ) of 0.034 (at 1 MHz), leakage current density (J) of ±3.0 × 10−6 A/cm2 (at ± 5 V) and fatigue-free characteristics. 相似文献
5.
Prasit Thongbai Bundit Putasaeng Teerapon Yamwong Santi Maensiri 《Journal of Materials Science: Materials in Electronics》2012,23(3):795-801
In this work, pure-CaCu3Ti4O12 was successfully prepared by a simple thermal decomposition method. This can easily be achieved by direct firing of starting
raw materials dissolved in an aqueous citric acid solution at 800 °C for 6 h. The results show that sintering conditions have
a remarkable influence on the microstructure of the CaCu3Ti4O12 ceramics. Interestingly, dense CaCu3Ti4O12 ceramic sintered at 1,050 °C for 2 h exhibits a high dielectric constant of ~5.1 × 103 with low loss tangent of ~0.048 at 30 °C and 1 kHz. The dielectric properties, electrical response of grain boundaries, and
related nonlinear current–voltage behavior are found to be associated with the microstructure of CaCu3Ti4O12 ceramics. 相似文献
6.
Tribological properties of bulk Al6061–Al2O3 nanocomposite prepared by mechanical milling and hot pressing were investigated. Al6061 chips were milled for 30 h to achieve a homogenous nanostructured powder. A 3 vol.% Al2O3 nanoparticles (∼30 nm) were added to the Al6061 after 15 and 30 h from the beginning of milling. The milling times with Al2O3 in these two samples were then 15 h and 30 min, respectively. Additionally, 3 vol.% Al2O3 (1 μm and 60 μm) was added to the Al6061 after 15 h of milling; where, the micron size Al2O3 in these two samples, was milled 15 h with the matrix. Hot pressing of milled samples was executed at 400 °C under 128 MPa pressure in a uniaxial die. The hot pressed samples were characterized by micro-hardness test, bulk density measurements, pin on disc wear test, and finally scanning electron microscopy observations. Fifteen hour-milled nanocomposite with nanoscale Al2O3, showed improvement in wear resistance and bulk density compared with that of 30 min-milled nanocomposites due to better dispersion of Al2O3 nanoparticles, improved surface quality of nanocomposite particles before pressing and more grain refinement of Al matrix. Moreover, increasing the reinforcement size increased the wear rate because of reduction in relative density, hardness and inter-particle spacing. 相似文献
7.
Jianguo Zhao Weiying ZhangErqing Xie Zhongli LiuJianwu Feng Zhaojun Liu 《Materials Science and Engineering: B》2011,176(12):932-936
One-dimensional Tb3+-doped β-Ga2O3 nanofibers were prepared by a simple and cost-effective electrospinning process. Field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Raman technique, and photoluminescence (PL) were used to characterize the electrospun nanofibers. FE-SEM results indicated that the diameters all of the nanofibers ranged from 100 to 300 nm, and the lengths of nanofibers reached up to several millimeters. The XRD and Raman results showed that the Ga2O3 phase belongs to the monoclinic phase. Under ultraviolet excitation, the β-Ga2O3:Tb3+ samples showed green emission with the strongest peak at 550 nm, corresponding to 5D4 → 7F5 transition of Tb3+ ions. The luminescence intensity had been further studied as a function of the doping concentration of Tb3+ in the β-Ga2O3 samples. 相似文献
8.
Glass samples of the system (15Li2O–30ZnO–10BaO–(45 − x)B2O3–xCuO where x = 0, 5, 10 and 15 mol%) were prepared by using the melt quenching technique. A number of studies, viz. density, differential
thermal analysis, FT-IR spectra, a.c. conductivity and dielectric properties (constant εφ, loss tan δ, a.c. conductivity,
σac, over a wide range of frequency and temperature) of these glasses were carried out as a function of copper ion concentration.
The analysis of the results indicate that the density increases while molar volume decreases with increasing of copper content
indicates structural changes of the glass matrix. The glass transition temperature, T
g, and crystallization temperature, T
c, increase with the variation of concentration of CuO referred to the growth in the network connectivity in this concentration
range, while glass-forming ability parameter (T
c − T
g) decreases with increasing CuO content, indicates an increasing concentration of copper ions that take part in the network-modifying
positions. The FT-IR spectra evidenced that the main structural units are BO3, BO4, and ZnO4. The structural changes observed by varying the CuO content in these glasses and evidenced by FTIR investigation suggest
that the CuO plays a network modifier role in these glasses while ZnO plays the role of network formers. The dielectric constant
decreased with increase in temperature and CuO content. The variation of a.c. conductivity with the concentration of CuO passes
through a maximum at 5 mol%. In the high temperature region, the a.c. conduction seems to be connected with the mixed conduction
viz., electronic conduction and ionic conduction. 相似文献
9.
A magnetic SO42−/ZrO2–B2O3–Fe3O4 solid superacid catalyst is prepared via a simple chemical co-precipitation approach. The obtained materials were characterized in detailed by X-ray powder diffraction, thermogravimetric analysis–different scanning calorimetry, Fourier transform infrared spectroscopy (FTIR), electron microscopy (SEM and TEM), and Mossbauer spectra. Powder X-ray diffraction patterns show that in this composite oxide the transformation temperature of ZrO2 from tetragonal to monoclinic phase is higher compared to the pristine SO42−/ZrO2 material. The introduction of Fe3O4 endows the superacid with a super-paramagnetic property while in a ferromagnetic state after calcination. The superacid exhibits high catalytic activity in forming ethyl acetate by esterification. 相似文献
10.
利用溶胶-凝胶方法制备了的CoAl2O4/Al2O3纳米复合陶瓷,并用X-ray分析(XRD)、红外光谱(IR)和扫描电镜分析(SEM)对其结构进行了分析.结果表明,随Al2O3含量增多,CoAl2O4尖晶石相从CoAl2O4/Al2O3凝胶中的析晶温度升高.SEM形貌也说明,随Al2O3含量增多,CoAl2O4/Al2O3陶瓷中形成一定的层状结构. 相似文献
11.
The effect of B2O3 addition on the sintering, microstructure and the microwave dielectric properties of the 5Li2O–0.58Nb2O5–3.23TiO2 (LNT) ceramics have been investigated. It is found that the LNT ceramics could be sintered well at ∼880 °C with low-level doping of B2O3 (≤2 wt.%). Only Li2TiO3 solid solution (Li2TiO3ss) crystal structure could be detected for all the ceramics with various amounts of B2O3 addition from the X-ray diffraction (XRD) results. And interestingly, two phases with different color in SEM images are observed in B2O3-doped LNT ceramics. EDS results suggest that the two different phases are two Li2TiO3ss phases with different amount of Nb. In addition, there is no much degradation in the microwave dielectric properties with the B2O3 adding. In the case of 0.5 wt.% B2O3-doped samples sintered at 880 °C, good microwave dielectric properties of ?r = 22, Q × f = 32,000 GHz, τf = 9.5 ppm °C−1 are obtained. 相似文献
12.
H. Doweidar 《Journal of Materials Science》2009,44(11):2899-2906
Refractive index and molar refraction of Li2O–, Na2O–, CaO–, and BaO–Ga2O3–SiO2 glasses have been used to test the validity of a structural model of silicate glasses containing Ga2O3 glasses. Ga2O3 enters these types of glass in a similar manner as Al2O3. It is assumed that, for (SiO2/Ga2O3) >1 and (Ga2O3/R2O) ≤1, Ga2O3 associates primarily with modifier oxides to form GaO4 units. The rest of modifier oxide forms silicate units with non-bridging oxygen ions. Silicate structural units have the
same factors as found for binary alkali- and alkaline earth silicate glasses. Differences between experimental and model values
suggest another structure for (Ga2O3/SiO2) ≥1. 相似文献
13.
以烧结板状刚玉和电熔镁铝尖晶石为原料、磷酸为结合剂,在1680℃下制备了刚玉-镁铝尖晶石复合耐火材料样品。在1500℃、0.2 MPa的条件下保温50 h测试试样高温蠕变性能,采用XRD、SEM和EDS分析蠕变前后试样的物相组成及显微结构,分析镁铝尖晶石添加量对刚玉-镁铝尖晶石复合耐火材料高温蠕变性能的影响。结果表明:刚玉-镁铝尖晶石复相材料较纯刚玉材料有着更好的抗蠕变性。镁铝尖晶石骨料在蠕变过程中会与氧化铝基质之间发生固溶反应而在尖晶石颗粒周围形成二次尖晶石层,有效连接了基质与骨料,提高了试样的抗蠕变性。在二次尖晶石层形成的过程中由于Mg;有着更高的迁移速率和在反应界面两侧较高的厚度比,会诱发柯肯达尔效应,导致界面处空位大量积累和孔隙的产生。 相似文献
14.
The bilayered LaSr2Mn2O7 manganite was synthesized by the sol–gel process at different pH values (3.5, 7, and 9.5) and different sintering temperatures (1553, 1623, and 1723 K) to investigate the effects of growth conditions upon the structural and electrical properties of the samples under investigation. X-Ray diffraction and FT-IR spectroscopy techniques confirm the phase formation for all samples. However, samples sintered at 1553, 1623, and 1723 K, and formed at pH = 7 are single phased having a tetragonal structure. Study of these single-phased samples indicates that with increase in the sintering temperature from 1553 to 1723 K, the average grain size increases from ~200 to ~1000 nm. To investigate the influence of grain size on the conduction mechanism, resistivity of the samples was measured as a function of temperature. The data obtained was analyzed by the adiabatic small polaron hopping model. These analyses show the influence of grain size on the parameters obtained by fitting the data by the above models. 相似文献
15.
为适应材料轻量化的发展需要,在1 400~1 600℃温度下开发了MgAl2O4-CaAl4O7-CaAl12O19(MA-CA2-CA6)复合材料,并考察了La2O3添加对该复合材料烧结行为、显微结构和力学性能的影响。结果表明,La2O3添加剂优先固溶到MA-CA2-CA6复合材料组成晶相CA6中,促使CA6相发生晶格畸变,有效抑制了CA6晶粒沿基面的异常长大,其形貌由片状向等轴状趋势转变,促使MA-CA2-CA6复合材料制备过程中由于CA6晶粒异常长大而导致的多孔网状显微结构得以有效消除,因此也极大地改善了Mg2+的扩散条件,在一定程度上间接促进了MA晶粒的发育,有效促进了MA-CA2-CA6复合材料的烧结。经1 200℃预烧、1 600℃保温2 h烧成后,当La2O3的添加量为4wt%时,MA-CA2-CA6复合材料试样的显气孔率由19.2%下降至6.1%,体积密度由2.78 g/cm3上升至3.18 g/cm3,制得了MA、CA2、CA6晶相呈现交织分布、显微结构致密、有利于其力学性能改善的La2O3/MA-CA2-CA6复合材料,经1 200℃预烧、-1 600℃保温2 h烧成后的4wt% La2O3添加试样,其冷态抗压强度由317 MPa增加到了501 MPa。 相似文献
16.
N.M.A. Hadia Santiago García-Granda José R. García D. Martínez-Blanco S.H. Mohamed 《Materials Chemistry and Physics》2014
α-Fe2O3 nanorods were synthesized via hydrothermal method. X-ray powder diffraction revealed the formation of rhombohedral α-Fe2O3 single crystal phase with fiber texture. Scanning and transmission electron micrographs analyses showed that the rhombohedral α-Fe2O3 has nanorods in shape with diameters of 40–85 nm and lengths of 150–45,000 nm. Isothermal magnetization vs. applied magnetic field curves measured at room and liquid nitrogen temperatures displayed a variation on magnetic ordering: from weak ferromagnetism at room temperature to not hysteretic behavior at liquid nitrogen temperature that is well described by a Langevin function. Moreover, the zero field cooling-field cooling curves under applied magnetic field of 100 Oe confirms the decreasing of Morin temperature transition due to nanometric size of the samples. 相似文献
17.
O. V. Ovchar D. A. Durilin A. G. Belous Bostjan Jancar Matjaz Spreitzer Danilo Suvorov 《Inorganic Materials》2011,47(11):1238-1241
We report the preparation and characterization of AgNb0.6Ta0.4O3 (ANT) based materials. The addition of Zn2TiO4 and ZnB2O4 influences the sintering temperature, phase composition, and microstructure of ANT ceramics. ANT doped with 1 wt % Zn2TiO4 or ZnB2O4 has high dielectric permittivity (400–470), low dielectric losses (tanδ ∼ 10−3), and a nonlinearity coefficient n R ≅ 3–9% (at a field strength E = 3 × 106 V/m). 相似文献
18.
An ultralow-temperature hydrothermal strategy was for the first time reported to synthesize spinel-type zinc manganese oxide (ZnMn2O4) nanocrystals at 70 °C. The synthetic parameters including hydrothermal temperature, zinc or manganese source, hydrothermal time, and NaOH concentration were systematically investigated. The structure and morphology characterization revealed that the resulting Zn–Mn spinels are tetragonal-phase, and have well-defined crystalline structure with the size of 10–20 nm. Furthermore, a defect spinel of λ-MnO2 nanocrystal (10–20 nm) was directly synthesized from ZnMn2O4 nanocrystal upon acid leaching. Finally, a redox mechanism for the formation of λ-MnO2 was discussed. 相似文献
19.
Ivana R?sslerová Ladislav Koudelka Zdeněk ?erno?ek Petr Mo?ner Ludvík Bene? 《Journal of Materials Science》2011,46(20):6751-6757
Thermal properties and crystallization of glasses from PbO–MoO3–P2O5 ternary system were studied in three compositional series (100 − x)[0.5PbO–0.5P2O5]–xMoO3 (A), 50PbO–yMoO3–(50 − y)P2O5 (B), and (50 − z)PbO–zMoO3–50P2O5 (C). Glass transition temperature, crystallization temperature, coefficient of thermal expansion, and dilatation softening
temperature of the studied glasses were determined by differential thermal analysis and dilatometry. Crystallization products
of annealed glass samples were investigated by X-ray diffraction and Raman spectroscopy. X-ray diffraction analysis of crystallized
glasses revealed the formation of PbP2O6, Pb3P4O13, and PbMoO4 in the samples of the B series. In the series A and C in the samples with a high MoO3 content, crystalline compounds of Pb(MoO2)2(PO4)2 and (MoO2)(PO3)2, respectively, were identified. Raman spectra of crystalline samples confirmed the results of X-ray diffraction measurements
and provided also information on thermal stability of glasses and formation of glass-crystalline phases in the studied glass
series. 相似文献
20.
SrFe12O19/Ni0.5Zn0.5Fe2O4 nanocomposite ferrite microfibers with diameters of 1–2 μm have been prepared by the sol–gel process. The SrFe12O19/Ni0.5Zn0.5Fe2O4 nanocomposite ferrites are formed after the precursor calcined at 850 °C for 2 h, fabricating from nanosized particles with a uniform phase distribution. The ferrite grain size increases with the calcination temperature. The magnetic properties for the nanocomposite ferrite microfibers are mainly influenced by the chemical composition and grain size. The nanocomposite ferrite microfibers obtained at 900 °C show the enhanced specific saturation magnetization (Msh) of 64.8 Am2 kg−1, coercivity (Hc) of 146.5 kA m−1 and remanence (Mr) of 33.6 Am2 kg−1 owing to the exchange–coupling interaction. This exchange–coupling interaction in the SrFe12O19/Ni0.5Zn0.5Fe2O4 nanocomposite ferrite microfibers has been discussed. 相似文献