首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the design and characterization of magnesium oxide based tunneling diodes which are produced on Al and InSe films as rectifying substrates are investigated. It was found that when Al thin films are used, the device exhibit tunneling diode behavior of sharp valley at 0.15 V and peak to valley current ratio (PVCR) of 11.4. In addition, the capacitance spectra of the Al/MgO/C device show a resonance peak of negative capacitance (NC) values at 44.7 MHz. The capacitance and resistance–voltage characteristics handled at an ac signal frequency of 100 MHz reflected a build in voltage (Vbi) of 1.29 V and a negative resistance (NR) effect above 2.05 V. This device quality factor (Q)–voltage response is ~104. When the Al substrate is replaced by InSe thin film, the tunneling diode valley appeared at 1.1 V. In addition, the PVCR, NR range, NC resonance peak, Q and Vbi are found to be 135, 0.94–2.24 and 39.0 MHz, ~105 and 1.34 V, respectively. Due to the wide differential negative resistance and capacitance voltage ranges and due to the response of the C/MgO/InSe/C device at 1.0 GHz, these devices appear to be suitable for applications as frequency mixers, amplifiers, and monostable–bistable circuit elements (MOBILE).  相似文献   

2.
Pd/Ru metallization scheme is fabricated on n-GaN as a Schottky contact, and the electrical and structural properties have been investigated as a function of annealing temperature by current–voltage (IV), capacitance–voltage (CV), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) measurements. As-deposited Ru/Pd/n-GaN contact yielded Schottky barrier height (SBH) of 0.67 eV (IV) and 0.79 eV (CV), respectively. Further, it is observed that the Schottky barrier height increases to 0.80 eV (IV) and 0.96 eV (CV) for the contact annealed at 300 °C. However, both IV and CV measurements indicate that the barrier height slightly decreased when the contacts are annealed at 400 °C and 500 °C. From the above observations, the optimum annealing temperature for Pd/Ru Schottky contact is 300 °C. Norde method is also employed to extract the barrier height of Pd/Ru Schottky contacts which are in good agreement with those obtained by the IV technique. X-ray photoelectron spectroscopy results shows that the Ga 2p core-level shift towards the low-energy side for the contact annealed at 300 °C compared to the as-deposited contact. Based on the XPS and XRD results, the reason for the increase in SBH upon annealing at 300 °C could be attributed to the formation of gallide phases at the Ru/Pd/n-GaN interface vicinity. The AFM results showed that the overall surface morphology of the Pd/Ru Schottky contacts on n-GaN is fairly smooth. The above observations reveal that the Pd/Ru Schottky contact is attractive for high-temperature device applications.  相似文献   

3.
An a.c. powder electroluminescent (EL) device using ZnGa2O4:Cr3+ phosphor was fabricated by the screen printing method. Optical and electrical properties of the device were investigated. The fabricated device shows a red emission at 695 nm driven by the a.c. voltage. The emission is attributed to the energy transfer from hot electrons to Cr3+ centers via self-activated Ga-O groups. Luminance (L) versus voltage (V) matches the well-known equation of L = L0exp(− bV − 1 / 2) and luminance increases proportionally with frequency due to the increase of excitation probability of host lattice or Cr3+ centers. The diagram of the charge density (Q) versus applied voltage (V) is based on a conventional Sawyer-Tower circuit. At 280 V and 1000 Hz, the luminance and the luminous efficiency of the fabricated powder EL device are about 1.0 cd/m2 and 13 lm/W, respectively. And under the high field, the device fabricated with the oxide-based phosphor of ZnGa2O4:Cr3+ shows excellent stability in comparison with the conventional sulfide powder EL device.  相似文献   

4.
An Al/Methyl Red/p-Si sandwich Schottky barrier diode (SBD) has been fabricated by adding a solution of the organic compound Methyl Red in chloroform onto a p-Si substrate, and then evaporating the solvent. Current-voltage (I-V) measurements of the Al/Methyl Red/p-Si sandwich SBD have been carried out at room temperature and in the dark. The Al/Methyl Red/p-Si sandwich SBD demonstrated rectifying behavior. Barrier height (BH) and ideality factor values of 0.855 eV and 1.19, respectively, for this device have been determined from the forward-bias I-V characteristics. The Al/Methyl Red/p-Si sandwich SBD showed non-ideal I-V behavior with the value of ideality factor greater than unity. The energy distribution of the interface state density determined from I-V characteristics increases exponentially with bias from 3.68 × 1012 cm− 2 eV− 1 at (0.81 − Ev) eV to 9.99 × 1013 cm− 2 eV− 1 at (0.69 − Ev) eV.  相似文献   

5.
Çi?dem Nuho?lu  Yasir Gülen 《Vacuum》2010,84(6):812-6439
The current-voltage and capacitance-voltage characteristics of Au/n-Si/Al Schottky barrier diode were measured in the temperature range of 100-800 °C. Au/n-Si/Al Schottky barrier diode annealed at temperatures from 100 °C to 400 °C for 5 min and from 500 °C to 800 °C for 7 min in N2 atmosphere. The electronic parameters such as barrier height and ideality factor (n) of the device were determined using Cheung's method. To determine whether or not a Schottky diode is ideal it can be used the ideality factor (n) found from its forward current-voltage (I-V) characteristics. It has been found that the value of Φb (0.82 or 0.83 eV) remains constant up to 500 °C and 0.80 and 0.79 eV in 600, 750 °C respectively in the forward I-V mode. An ideality factor value of 1.04 was obtained for as-deposited sample. The ideality factor n varied from 1.04 to 2.30. The experimental results have shown that the ideality factor (n) values increases with increasing annealing temperature up to 750 °C. This has been explained in terms of the presence of different metallic-like phases produced by chemical reactions between the Au and Si substrate because of the annealing process. The Φb (C-V) values obtained from the reverse-bias C−2-V curves of the as-deposited and annealed diode are in the range 0.99-1.12 eV. The difference between Φb (C-V) and the Φb (I-V) is in close agreement with values reported in literature. Besides Fermi energy level and carrier concentration determined by using thermionic emission (TE) mechanism show strong temperature dependence. It has been seen current-voltage characteristics of the diode show an ideal behavior.  相似文献   

6.
We have investigated the substitution effect of pentavalent bismuth ions on the electronic structure and physicochemical properties of barium indium tantalate. X-ray diffraction, X-ray absorption spectroscopic, and energy dispersive spectroscopic microprobe analyses reveal that, under oxygen atmosphere of 1 atm, pentavalent Bi ions are successfully stabilized in the octahedral site of the perovskite tantalate lattice. According to diffuse reflectance UV-vis spectroscopic analysis, the Bi substitution gives rise to the significant narrowing of band gap of barium indium tantalate even at a low Bi content of ∼5%, underscoring a high efficiency of Bi substitution in the band gap engineering. Such an effective narrowing of the band gap upon the Bi substitution would be attributable to the lowering of conduction band position due to the high electronegativity of BiV substituent. As a result of band gap engineering, the Ba(In0.5Ta0.5−xBix)O3 compounds with x ≥ 0.03 can generate photocurrents under visible light irradiation (λ > 420 nm). Based on the present experimental findings, it becomes clear that the substitution of highly electronegative p-block element like BiV ion can provide a very powerful tool for tailoring the electronic structure and physicochemical properties of wide band gap semiconductors.  相似文献   

7.
The frequency and applied bias voltage dependence of the dielectric properties and dielectric anisotropy of liquid crystal (LC) doped with side-chain liquid crystalline polymer (SLCP) mixture have been investigated using the admittance spectroscopy method (CV and G/ωV) in the frequency range of 10 kHz to 10 MHz at room temperature. The liquid crystal used in this experiment is E63. The doping material used in this study is SLCP and its concentration is ensured 1 wt % in E63. Dielectric constant (?′), dielectric loss (?), dielectric loss tangent (tan δ) and real and imaginary parts of electrical modulus (M′ and M″) of the E63/SLCP mixture was also calculated. Moreover, dielectric anisotropy (Δ?) as a function of frequency was obtained. Results show that the values of the all dielectric parameters are strong functions of frequency and applied bias voltage. After a critical frequency, dielectric anisotropy has negative values according to p/n type changing.  相似文献   

8.
The Sr–Gehlenite (Sr2Al2SiO7) ceramic has been prepared by the conventional solid-state ceramic route. Phase pure Sr2Al2SiO7 (SAS) ceramic sintered at 1525 °C for 4 h has ?r = 7.2 and Qu × f = 33,000 GHz. The SAS showed large negative τf of −37.0 ppm/ °C. A low value of τf was achieved by preparing SAS–CaTiO3 composite. The composite with 0.04 volume fractions (Vf) CaTiO3 sintered at 1500 °C for 4 h showed good microwave dielectric properties: ?r = 8.6, Qu × f = 20,400 GHz and τf = +8.5 ppm/°C.  相似文献   

9.
A. Hussain  P. Akhter  A.A. Shah 《Vacuum》2010,84(7):975-979
Aluminum/Zinc Phthalocyanine/n-Si metal semiconductor contact with organic interfacial layer has been developed and characterized by Current-Voltage-Temperature (I-V-T) measurements for the study of its junction and charge transport properties. The junction parameters, such as diode ideality factor (n), barrier height (φb) and series resistance (RS), of the device were found to shift with device temperature. The diode ideality factor was found to increase with the device temperature up to 323 K. However, a decreasing trend in the value of n was observed beyond this temperature. The barrier height and series resistance were found to increase and decrease, respectively with increasing device temperature. The peak of interface state energy distribution curves was shifted, in terms of Ess-Ev value, from 0.622 eV to 0.827 eV with 52 meV activation energy of the charge carriers. The data analysis implies that the Fermi level of the organic interfacial layer shifts as function of device temperature. In terms of dominant conduction mechanism, the I-V-T data analysis confirms the relationship log (IV4) ∝V1/2 with the device temperature in the range of 313-343 K and the Poole-Frenkel type is found to be the dominant conduction mechanism for the hybrid device.  相似文献   

10.
Vertically aligned p-type ZnO (Li–N co-doped) nanowires have been synthesized by hydrothermal method on n-type Si substrate. X-ray diffraction pattern indicated a strong peak from (0 0 0 2) planes of ZnO. The appearance of a strong peak at 437 cm−1 in Raman spectra was attributed to E2 mode of ZnO. Fourier transformed infrared studies indicated the presence of a distinct characteristic absorption peaks at 490 cm−1 for ZnO stretching mode. Compositional studies revealed the formation of Li–N co-doped ZnO, where Li was bonded with both O and N. The junction properties of p-type ZnO nanowires/n-Si heterojunction diodes were evaluated by measuring IV and CV characteristics. IV characteristics exhibited the rectifying behavior of a typical p–n junction diode.  相似文献   

11.
Trivalent/bivalent metal ions doped TiO2 thin films (MxTi1−xO2, M = Cr3+, Fe3+, Ni2+, Co2+, Mn2+ and x = 0.01, 0.05, 0.1, 0.15, 0.2) were deposited on Indium–tin oxide (ITO) coated glass substrates by spin coating technique. X-ray photoelectron spectroscopy (XPS) showed Ti4+ oxidation state of the Ti2p band in the doped p-TiO2. The homogenous MxTi1−xO2 was used to support n-ZnO thin films with thickness ∼40–80 nm and vertically aligned n-ZnO nanorods (NR) with length ∼300 nm and 1.5 μm. Current (I)–voltage (V) characteristics for the Ag/n-ZnO/MxTi1−xO2/ITO/glass assembly showed rectifying behavior with small turn-on voltages (V0) < 1 V. The ideality factor (η) and the resistances in both forward and reverse bias were calculated. The temperature dependence performance of these bipolar devices was performed and variation of the parameters with temperature was studied.  相似文献   

12.
Thin films of Cd0.8Zn0.2Te/Si structures were prepared by vacuum evaporation technique. The electrical properties such as activation energy, barrier height, and transport mechanism along with the capacitance-voltage characteristics are analyzed. The zero field activation energy calculated from the saturation current density with the inverse absolute temperature is found to be 0.37 eV and the barrier height is 0.54 eV. As the applied bias voltage increases the activation energy decreases from 0.3 to 0.22 eV for the bias range of 0-2 V. From the observed current voltage characteristics it is found that the surface state density is high for the films deposited at room temperature. From the high-frequency (1 MHz) C-V measurement the built in voltage is found to be 0.15 V. The plot of 1/C2 vs the applied bias voltage behaviour is linear, indicating the presence of abrupt junction. The acceptor concentration as obtained from the 1/C2 vs bias voltage is 1.4×1016 cm−3.  相似文献   

13.
Ö. Faruk Yüksel  S.B. Ocak 《Vacuum》2008,82(11):1183-1186
High frequency characteristics of tin oxide (SnO2) thin films were studied. SnO2 thin films have been successfully grown on n-type Si (111) substrates by using a spray deposition technique. The capacitance-voltage (C-V) and conductance-voltage (G/ω-V) characteristics of the metal-oxide-semiconductor (Au/SnO2/n-Si) Schottky diodes were investigated in the high frequency range from 300 kHz to 5 MHz. It has been shown that the interface state density, Dit, ranges from 2.44 × 1013 cm−2 eV−1 at 300 kHz to 0.57 × 1013 cm−2 eV−1 at 5 MHz and exponentially decreases with increasing frequency. The C-V and G/ω-V characteristics confirm that the interface state density and series resistance of the diode are important parameters that strongly influence the electrical parameters exhibited by the metal-oxide-semiconductor structure.  相似文献   

14.
Many of the phthalocyanines exhibit p-type conductivity, and electrical conductivity through thin films of these materials having ohmic contacts show space-charge-limited conductivity (SCLC) dominated by trap levels located within the band gap. In the present work evaporated thin films of lead phthalocyanine with ohmic gold electrodes were prepared, which showed two distinct regions in the dependence of current density J on applied voltage V. At low voltages sample conductivity was ohmic, changing at higher voltages to a square-law dependence of J on V, which is indicative of SCLC dominated by trap levels located at a single discrete energy level. The results of temperature measurements indicate three distinct regions, in each of which the hole concentrations are controlled by different activation energies. A simple model is proposed in which a single trap level is located at the same energy spacing Et from the valence band edge as a single acceptor level. This predicts three different temperature ranges, two of which correspond to those covered by the experimental results. The experimental results indicate a trap level located at an energy Et = 0.36 eV above the valence band edge and a thermal band gap Eg = 1.51 eV. Using the proposed model together with data from the experimental J-V characteristics, an acceptor concentration of 4.85 × 1019 m − 3 and a trap concentration of 5.18 × 1025 m− 3 are indicated. Measurements of mobility based on this model yield a value of 2.6 × 10− 4 m2 V− 1 s− 1, which is in close agreement with previous work.  相似文献   

15.
The photoconductivity of p-i-n GaInNAs/GaAs multiple quantum well (MQW) mesa structures is investigated. When illuminated with photons at energy greater than the GaAs bandgap, a number of oscillations are observed in the current–voltage I–V characteristics. The amplitude and position of the oscillations is shown to depend upon the temperature, as well as upon the exciting wavelength and intensity. Due to the absence of the oscillations in the dark I–V and at temperatures above T = 200 K, we explain them in terms of photogenerated electrons escaping from quantum wells via tunnelling or thermionic emission.  相似文献   

16.
ZnO films were prepared on p-Si substrates using pulsed laser deposition (PLD) and n-ZnO/p-Si heterojunctions were fabricated at different oxygen partial pressures. The effects of oxygen pressures on crystallinity and surface morphology of ZnO films and the I-V characteristics of n-ZnO/p-Si heterojunctions were studied. It was found that the films grown in the oxygen pressure range from 10−5-10−2 Torr were all c-axis oriented. The surface morphologies were strongly dependent on the oxygen partial pressure. The current-voltage (I-V) characteristics of the heterojunctions could be classified into two categories depending on the oxygen pressure. At low pressure (10−5-10−4 Torr), the I-V curves were similar to those of common p-n junctions. As the oxygen pressure increased to 10−3 Torr, the I-V curves changed markedly. Based on the I-V characteristics, an energy band diagram of n-ZnO/p-Si was proposed.  相似文献   

17.
Top-contact Copper phthalocyanine (CuPc) thin-film field-effect transistor (TFT) with SiO2/Ta2O5/SiO2 (STS) multilayer as the dielectric was fabricated and investigated. With the multi-layer dielectric, drive voltage was remarkably reduced. A relatively large on-current of 1.1 × 107 A at a VGS of −15 V was obtained due to the strong coupling capability provided by the STS multilayer gate insulator. The device shows a moderate performance: saturation mobility of μsat = 6.12 × 104 cm2/V s, on-current to off-current ratio of Ion/Ioff = 1.1 × 103, threshold voltage of VTH = −3.2 V and sub-threshold swing SS = 1.6 V/dec. Atomic force microscope images show that the STS multilayer has a relative smooth surface. Experiment results indicate that STS multilayer is a promising insulator for the low drive voltage CuPc-based TFTs.  相似文献   

18.
xMgWO4-(1 − x) Ba0.5Sr0.5TiO3 (x = 0.0, 5.0, 15.0, 25.0 and 35.0 wt%) composite ceramics were prepared via solid state reaction processing. Their structural and dielectric properties were systematically characterized. A significant increase in grain size was observed with increasing MgWO4 content, which was accompanied by obvious variations in dielectric properties of the composite ceramics. It is found that the permittivity peaks of the samples gradually shifted to low temperatures with increasing MgWO4 content. At the same time, tunabilities of the composite ceramics decreased, but their Q values increased. The sample with 35 wt% MgWO4 possesses a high tunability of 16.8% (∼10 kHz), a low permittivity of 65 and an appropriate Q value of 309 (∼4.303 GHz), which meet the requirements of high power and impedance matching, thus making it a promising candidate for applications as electrically tunable microwave devices.  相似文献   

19.
Sn–3.5 wt.%Ag–0.9 wt.%Cu alloy was directionally solidified upward at a constant growth rate (V = 7.20 μm s−1) with different temperature gradients (G = 2.48–6.34 K mm−1) by using a Bridgman type directional solidification furnace. The eutectic microstructures of directionally solidified Sn–3.5 wt.%Ag–0.9 wt.%Cu alloy were observed to be plate and rod structures from quenched samples. The values of eutectic spacings (λ) and microhardness (HV) were measured from both transverse and longitudinal sections of the samples. The dependence of eutectic spacings (λ) and microhardness (HV) on the temperature gradient (G) were determined by using linear regression analysis. According to these results, it has been found that, the value of λ decreases with the increasing the value of G and whereas, the value of HV increases for a constant growth rate. The results obtained in the present work were also compared with the previous similar experimental results obtained for binary and ternary alloys.  相似文献   

20.
This paper presents a discussion about the influence of deep level defects on the height of Ni–Si based Schottky barriers to 4H–SiC. The defects were characterized by deep level transient spectroscopy (DLTS) in a wide range of temperatures (78–750 K). The numerical simulation of barrier height value as a function of dominant defect concentration was carried out to estimate concentration, necessary to “pin” Fermi level and thus significantly influence the barrier height. From comparison of the results of simulation with barrier height values obtained by capacitance–voltage (CV) measurements it seems that dominant defect in measured concentration has a very small impact on the barrier height and on the increase of reverse current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号