共查询到20条相似文献,搜索用时 15 毫秒
1.
Zinc oxide (ZnO) nanowires with an average diameter of 15 nm were grown using a vapor phase transport process. Field emission was achieved from these nanowires in spite of their random orientation. The electric field for the extraction of a 10 μA/cm2 current density was measured to range from 4.4 to 5.0 V/μm, and that for a 1 mA/cm2 current density from 7.6 to 8.7 V/μm, depending on whether the sample was submitted to a heat treatment. The results exhibit the potential application of ZnO nanowires as field emitters in future flat panel displays. 相似文献
2.
Surface textures have been fabricated on a molybdenum doped zinc oxide (MZO) film using a shadow mask in a co-sputter process. The surface textures yielded 5.3% and 10.1% of light diffusion in the visible light region for MZO films with a thickness of 100 nm and 200 nm, respectively. Light diffusion in the near infra-red region was slightly less with 4.5% for the 100 nm MZO film and 8.9% for the 200 nm MZO film. The enhanced light diffusion will be beneficial to the light trapping efficiency of a-Si/µ-Si based thin film solar cells. 相似文献
3.
Enhanced ultraviolet sensitivity of zinc oxide nanoparticle photoconductors by surface passivation 总被引:1,自引:0,他引:1
Zinc oxide nanoparticles were created by a top-down wet-chemical etching process and then coated with polyvinyl-alcohol (PVA), exhibiting sizes ranging from 10 to 120 nm with an average size approximately 80 nm. The PVA layer provides surface passivation of zinc oxide nanoparticles. As a result of PVA coating, enhancement in ultraviolet emission and suppression of parasitic green emission is observed. Photoconductors fabricated using the PVA coated zinc oxide nanoparticles exhibited a ratio of ultraviolet photo-generated current to dark current as high as 4.5 × 104, 5 times better than that of the devices fabricated using uncoated ZnO nanoparticles. 相似文献
4.
Photocatalytic degradation for methylene blue using zinc oxide prepared by codeposition and sol-gel methods 总被引:1,自引:0,他引:1
Zinc oxide nanoparticle was obtained by zinc hydrate deposited on the silica nanoparticle surface and zinc hydrate was dispersed in starch gel. The structure of zinc oxide particle was characterized by nitrogen adsorption-desorption and XRD, the morphology was observed by TEM. The result showed that the zinc oxide nanoparticle deposited on the silica nanoparticle surface was well-dispersed and less than 50nm, displayed higher photocatalytic activity for methylene blue degradation. However, the zinc oxide nanoparticle in a size of 60nm was derived from starch gel and showed poorer photocatalytic activity. It provided a simple and effective route to prepare zinc oxide nanoparticle with higher photocatalytic activity through depositing zinc oxide on the silica particle surface, moreover, the catalyst is easier to recover due to its higher density. 相似文献
5.
Durability of doped zinc oxide/silver/doped zinc oxide low emissivity coatings in humid environment 总被引:1,自引:0,他引:1
The relationship between internal stress of doped zinc oxide films and durability of doped zinc oxide/silver/doped zinc oxide low emissivity (low-e) coatings in humid environment was investigated. Aluminum, titanium, tin, chromium, silicon, gallium, magnesium, boron, barium, and calcium were chosen as a doping element in sputtering targets. Ratios of dopant/zinc in the oxide targets were 4/96-5/95 at.%. Films were formed by radio frequency sputtering. Doping of barium and calcium to the zinc oxide film led to a large increase in the internal stress. Doping of the other elements resulted in decreasing the internal stress. It was concluded that durability of the low-e coatings in humid environment closely correlated with the internal stress of the oxide layers. 相似文献
6.
Highly structured ZnO layers comprising well-shaped hexagonal rods were prepared by spray pyrolysis deposition of zinc chloride aqueous solutions in the temperature range of 490-560 °C. The layers were characterised by SEM, XRD and SAED. A flat ZnO film evolves into the structured layer consisting of single crystalline hexagonal elongated prisms at growth temperatures close to 500 °C and above. The rise of both the growth temperature and solution concentration increases rod dimensions. The deposition of the 0.1 mol/l solution at ∼500 °C results in crystals with a diameter of 200-300 nm and length of 800 nm. However, the rods grown at 560 °C indicate a width in the range of 400-600 nm and a length of up to 2500 nm. The deposition of the 0.05 mol/l solution at 560 °C results in the rods with a diameter of 100-300 nm and a length of 1500 nm. The increase of the concentration up to 0.2 mol/l results in branched crystals, mainly tripods with a similar leg size of 600-700 nm in width and 3000 nm in length. According to XRD, the ZnO layers grown from the 0.1 mol/l solution in the temperature range of 450-560 °C are c-axis-oriented, independent of morphology. The XRD peaks intensities ratio (I002/I101) of the samples deposited at 560 °C changes from 9 to 1.3 by an increase in the solution concentration from 0.05 to 0.2 mol/l and indicates that c-axis orientation vanishes at higher concentrations. We showed that ZnO nanorods with the length to diameter ratio of 30 can be prepared by spray technique using indium tin oxide-covered glass substrates instead of bare glass. 相似文献
7.
T. Swathi 《Materials Letters》2008,62(23):3900-3902
Transition metal containing spinel structure type oxides exhibit characteristic structural, electrical, magnetic and catalytic properties. Present work investigated a novel application of nickel and cobalt containing spinel oxide (NiCo2O4) in the conversion of p-nitrophenol to p-aminophenol. The oxide compound was synthesized by citrate gel method and characterized by powder X-ray diffraction method and scanning electron microscopy. The conversion process involved room temperature hydrogenation of p-nitrophenol by aqueous sodium borohydride. Powder nickel cobalt oxide was used as a catalyst. The reduction of p-nitrophenol has been monitored by UV-VIS and IR spectroscopic analysis. Complete conversion of the nitro compound to amino compound was achieved within a minute. 相似文献
8.
Peculiarities of nitrogen dioxide detection with sprayed undoped and indium-doped zinc oxide thin films 总被引:1,自引:0,他引:1
Nitrogen dioxide (NO2) sensors based on sprayed zinc oxide (ZnO) thin films have been prepared. The effect of the film thickness and the In-doping on the sensor performance (sensor response and resistance) is analyzed. By adding 3 wt.% of indium nitrate to the spraying solution it is possible to enhance the film-gas response to 5 ppm of NO2 at 275 °C. At the same time the film resistance is sensibly reduced. The film crystallographic structure, morphology and additive content are studied by means of X-ray Diffraction, Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Atomic Force Microscopy. The possible sensitization mechanism is discussed. 相似文献
9.
Zhiyong Qiu 《Thin solid films》2010,518(21):5912-5915
A simple method for forming zinc oxide (ZnO) films has been discovered. Radio-frequency (rf) sputtered metallic zinc (Zn) film is boiled in ultrapure water at 368 K. The opaque Zn film changes into a transparent film. It is confirmed by transmission electron microscopy and X-ray diffraction that the transparent film is hexagonal ZnO. Optical and morphological properties of the ZnO film are discussed. 相似文献
10.
Muhammad Umar Khan 《Science and Technology of Advanced Materials》2016,17(1):398-409
Resonant propagating waves created on the surface of a dielectric multilayer stack, called Bloch surface waves (BSW), can be designed for high sensitivity monitoring of the adjacent refractive index as an alternative platform to the metal-based surface plasmon resonance (SPR) sensing. The resonant wavelength and polarization can be designed by engineering of the dielectric layers unlike the fixed resonance of SPR, while the wide bandwidth low loss of dielectrics permits sharper resonances, longer propagation lengths and thus their use in waveguiding devices. The transparency of the dielectrics allows the excitation and monitoring of surface-bound fluorescent molecules. We review the recent developments in this technology. We show the advantages that can be obtained by using high index contrast layered structures. Operating at 1550 nm wavelengths will allow the BSW sensors to be implemented in the silicon photonics platform where active waveguiding can be used in the realization of compact planar integrated circuits for multi-parameter sensing. 相似文献
11.
Stéphanie Dauphas Aurélie Girard Tayeb Mohammed-Brahim Anne Corlu Olivier Lavastre 《Thin solid films》2009,517(21):6016-6479
A stepwise functionalization of silicon nitride surfaces is followed by X-ray photoelectron spectroscopy (XPS). The first step involves a silanization reaction leading to the formation of a silane film with a thickness estimated by XPS of one or two molecular layers. A monoprotected homobifunctionalized linker is then used to avoid the formation of bridge structures on the surface. The linker reacts quantitatively with the amino groups of the surface as outlined by the absence of residual unreacted CNH2/CNH3+ groups in XPS analyses. Deprotection of the ester groups of the immobilized linker and subsequent reaction with N-hydroxysuccinimid lead to N-hydroxysuccinimid activated surfaces able to react with biological species. These surfaces were then incubated with anti-transferrin antibodies. As seen by XPS and atomic force microscopy analyses, the concentration and incubation conditions of antibodies are important to obtain a compact layer of antibodies on the surface. All chemical steps of the procedure are compatible with microelectronic process on silicon. Moreover, antibodies introduced under native conditions at physiological pH, in the last step of the immobilization process, recognized specifically antigens, as shown by fluorescence competitive assay. 相似文献
12.
Zinc oxide (ZnO) was incorporated into metal-insulator-semiconductor (MIS) structures featuring high dielectric constant (high-κ) barium tantalate (BaTa2O6)or alumina (Al2O3)as the insulator, and the structures were electrically evaluated for potential applications in transparent thin film transistors. The ZnO films were deposited by radio-frequency magnetron sputtering at 100 °C whereas the dielectric films were deposited by the same method at room temperature. The leakage currents of both the BaTa2O6 and Al2O3 structures were on the order of 10−7A/cm2. The trap density and trapped charge concentration at the BaTa2O6/ZnO interface were determined to be 6.18 × 1011 eV−1 cm−2and 5.82 × 1011 cm−2 from conductance-voltage and capacitance-voltage measurements. At the Al2O3/ZnO interface the trap density and trapped charge were more than an order of magnitude smaller at 1.09 × 1010 eV−1 cm−2and 1.04 × 1010 cm−2 respectively. The BaTa2O6 structures had significantly larger frequency dispersions due to the larger number of interface traps. Chemical analysis using X-ray photoelectron spectroscopy with depth profiling indicates that acceptor type defects associated with a deficiency of oxygen are related to the observed electron trapping in the BaTa2O6MIS structure. Overall, the results indicate that Al2O3 would be better suited for transparent thin film transistors deposited at low temperature or without substrate heating. 相似文献
13.
Jérôme Steinhauser Stefan MeyerMarlène Schwab Sylvie FaÿChristophe Ballif U. KrollD. Borrello 《Thin solid films》2011,520(1):558-562
The stability in humid environment of low pressure chemical vapor deposited boron doped zinc oxide (LPCVD ZnO:B) used as transparent conductive oxide in thin film silicon solar cells is investigated. Damp heat treatment (exposure to humid and hot atmosphere) induces a degradation of the electrical properties of unprotected LPCVD ZnO:B layers. By combining analyses of the electrical and optical properties of the films, we are able to attribute this behavior to an increase of electron grain boundary scattering. This is in contrast to the intragrain scattering mechanisms, which are not affected by damp heat exposure. The ZnO stability is enhanced for heavily doped films due to easier tunneling through potential barrier at grain boundaries. 相似文献
14.
将单壁碳纳米管分散到溶有光引发剂2-羟基-2-甲基-1-苯基-1-丙醇的四氢呋喃溶液中,在紫外光辐照下,光引发剂裂解生成2-羟基异丙基自由基。通过自由基的偶合反应,2-羟基异丙基自由基偶合到碳纳米管表面。用UV-Vis光谱、FTIR、拉曼光谱、TGA-MS及HRTEM等表征方法,证实在单壁碳纳米管表面引入了羟基。UV-Vis光谱上范霍夫吸收峰的消失表明碳纳米管表面被功能化。羟基化的SWCNTs样品在FTIR光谱中出现的3420cm-1(O—H键)、2930和2859cm-1(烷基C—H键)峰进一步证实了碳纳米管的功能化。拉曼光谱显示,随着SWCNTs的功能化,其切向模式吸收带与杂碳原子吸收带的相对比值(IG/ID)下降。TGA-MS的m/z59峰(400℃)揭示了SWCNTs上存在着异丙醇基团。HRTEM和溶解数据表明,光解改性有助于碳纳米管管束间缠结的解开,进而提高了其在有机溶剂中的溶解性,并且在一定程度上保持了碳纳米管的结构。 相似文献
15.
Prakash ThangarajJayaprakash Rajan Sathyaraj DuraiSanjay Kumar Ayalsomayajula RatnaPhaniGiovanni Neri 《Vacuum》2011,86(2):140-143
The size controlled zinc oxide nanoparticle is synthesized in the isothermal evaporation method with albumen (egg white). This method is simple and cost effective for synthesis of ZnO nano powder. The egg white foam was assisted to increase the reaction rate and produce the zinc oxide nano powder. This method helps to attain the particle size in the range 13-28 nm. The results from X-ray diffraction patterns and TEM micrograph confirmed the formation of nano crystalline phase with particle size ranges from 13 nm to 28 nm. The samples were further analyzed by using Fourier transform Infrared spectroscopy (FT-IR), photoluminescence spectrum (PL), thermogravimetric analysis (TGA) and Resistivity measurement. The less time consumption in isothermal evaporation process was one of the significant roles for large scale zinc oxide nano powder production. 相似文献
16.
Photocatalytic decolorization of azo-dye Orange II in water has been examined in an external UV light irradiation slurry photoreactor using zinc oxide (ZnO) as a semiconductor photocatalyst. The effects of process parameters such as light intensity, initial dye concentration, photocatalyst loading and initial solution pH on the decolorization rate of Orange II have been systematically investigated. A two-stage photocatalytic decolorization of Orange II, the first stage of fast decolorization rate and the subsequent second stage of rather slow decolorization rate, was found. The efficiency of decolorization of Orange II increased as initial Orange II concentration decreased and UV light intensity increased. There was the optimal ZnO concentration being around 1000 mg L(-1). The optimal pH was around 7.7, which was at the natural pH of the dye solution. The effect of aeration rate on the decolorization of Orange II has been also investigated and the enhancement of decolorization of Orange II with increasing aeration rate was found. By using a model for the light intensity profile in the external UV light irradiation slurry photoreactor, the simulation model for the decolorization of Orange II with ZnO photocatalyst has been developed. The proposed model in which the slow decolorization in the second stage as well as the initial fast decolorization is also taken into account could simulate the experimental results for UV light irradiation satisfactorily. The proposed simulation model in which the change of light intensity with time due to the decolorization of Orange II and the light scatter due to solid photocatalysts are considered will be very useful for practical engineering design of the slurry photoreactor of wastewater including textile dyes. 相似文献
17.
The kinetics of zinc and lead ions removal by modified zeolite-clinoptilolite has been investigated. The rate of the ion exchange process for lead ions is faster than for zinc ions, as well as the time needed to reach the equilibrium. The ion exchange capacity of zeolite of lead ions is doubly higher than that of zinc ions. Diffusion models according to the Vermeulen's approximation, the parabolic diffusion model and the homogeneous diffusion model have been tested with the experimental data of ion exchange for zinc and lead. For both systems examined, the best fit of the models proposed with the experimental data was shown by the Vermeulen's approximation and the homogeneous diffusion model with t-->t(infinity). The diffusion coefficients are calculated from kinetic models of lead ions they are of the order of 10(-6)cm(2)/min, constant for all examined initial concentrations and not dependent on time. The diffusion coefficients in the system of zinc ions is of the order of 10(-8)cm(2)/min, also independent of initial concentrations, but decreasing with time from the beginning of ion exchange to the equilibrium. 相似文献
18.
Meng-Yueh Liu Chih-Hua Chang Jing-Shun Huang Ing-Jye Wang Chun-Yu Lee Chin-Liang Yeh Ching-Fuh Lin 《Thin solid films》2010,518(17):4964-4969
The inverted polymer solar cell (PSC) based on a sol-gel derived zinc oxide (ZnO) thin film as an electron selective layer is investigated. The device performance is improved after the fabricated device is placed in air for a few days. The improvement is attributed to the self-organization of the poly(3-hexylthiophene)/[6,6]-phenyl-C61-butyric acid methyl ester layer and oxidation of the silver electrode with time, resulting in a significant enhancement in the short circuit current, fill factor and open circuit voltage. The investigation shows that the inverted PSC based on ZnO thin film exhibits a high efficiency of 3.8% on the 6th day after fabrication without the use of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) and encapsulation. 相似文献
19.
《材料科学技术学报》2019,35(12):2799-2808
β-SiC nanowires(SiCNWs) were selectively grown in the interlaminar matrix with a volume fraction of0.65% by applying a pyrocarbon coating on carbon fibers, which realizes the proper reinforcement of C/C composites. The thickness of the pyrocarbon is optimized to 0.5 μm based on the analysis of in-situ fiber strengths with the fracture mirror method. The pyrocarbon coating increased the in-situ fiber strength by~7% and prevent brittle fracture of the composites. Compared with C/C, the interlaminar shear and flexural strength of SiCNW-C/C(10.06 MPa and 162.44 MPa) increase by 158% and 57%. Incorporating SiCNWs changes the crystallite orientations and refines the crystallite size of pyrocarbon matrix. The functions of SiCNWs vary with their loading density. When SiCNWs are sufficient in the matrix, they help reinforcing and improving the critical failure stress of the matrix. When their density decreases to a certain degree, SiCNWs help changing the crystallite orientations of pyrocarbon and toughening the matrix. 相似文献
20.
A. Salaün J.A. Hamilton S.B. Newcomb S.C. Padmanabhan M. Salaün 《Thin solid films》2010,518(23):6921-9960
The feasibility of Aerosol Assisted Chemical Vapour Deposition (AA-CVD) has been investigated for the growth of zinc oxide (ZnO) films containing preformed metal nanoparticles. The deposition parameters were first established for ZnO thin films, by varying the heating configuration, substrate temperature and deposition time. Films were characterised using Scanning Electron Microscopy and X-Ray Diffraction. As-deposited films, grown at 250 °C, were mostly amorphous and transformed to highly crystalline Wurtzite ZnO at higher substrate temperatures (400-450 °C). A change in the preferential orientation of the films was observed upon changing (i), the substrate temperature or (ii), the heating configuration. Following this, the applicability of the AA-CVD process for the incorporation of preformed nanoparticles (platinum and gold) in ZnO thin films was investigated. It was found that surface agglomeration occurred, such that the ZnO films were capped with an inhomogeneous coverage of the metal. These layers were characterised using Transmission Electron Microscopy and Electron Diffraction. A possible mechanism for the formation of these metal surface clusters is presented. 相似文献