首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 622 毫秒
1.
The authors report the use of an optoelectronic system for the measurement of terahertz (THz) pulses by using chirped pulse technology. This system measures the spatio-temporal distribution of free-space pulsed radiation with an unprecedented data acquisition-rate. Using a linearly chirped optical probe pulse with an electro-optic crystal, a temporal waveform of a copropagating THz field is linearly encoded onto the frequency spectrum of the optical probe pulse and then decoded by dispersing the probe beam from a grating to a detector array. Acquisition of picosecond THz field pulses without using mechanical time-delay devices have been achieved. A single-shot electro-optic measurement of the temporal waveform of a THz pulse has been demonstrated. Unparalleled by other THz sampling techniques, this single-shot method provides what is believed to be the highest possible data-acquisition rate. Temporal resolution, sensitivity, optimal optical bias point of electro-optic modulation, potential applications, and possible improvements are also discussed. In principle, this technique can also be used in magneto-optic measurements  相似文献   

2.
We propose a method of long-term stabilization of the repetition rate and the spectral envelope in a femtosecond mode-locked (fs-ML) laser pulse by a simple control method without modifying the laser cavity configuration. The effectiveness of the repetition-rate-stabilized fs-ML laser was evaluated in a long-optical-path (LOP) pulse interferometer with a short reference arm. The resulting accuracy in the LOP pulse interferometer was improved to one-seventh that of a free-running fs-ML laser. Moreover, the stabilization of the spectral envelope was estimated to suppress the fluctuation in the phase and group indices of an object under testing by 1/50, which can increase the measurement accuracy in pulse interferometry. The simple and practical stabilization method provides a means to increase the application of pulse interferometry using the fs-ML laser  相似文献   

3.
孙金海  蔡禾  张旭涛  张景  刘永强  巢增明 《红外与激光工程》2019,48(12):1219001-1219001(5)
给出了ZnTe电光晶体折射率和吸收系数随太赫兹波频率而变化的计算曲线,比较了太赫兹波在ZnTe中传播时的相速度和群速度。通过与太赫兹频率和晶体厚度相关的电光效率响应函数,理论计算了ZnTe电光晶体对太赫兹脉冲的探测电光响应,得到了晶体厚度与探测到的太赫兹频谱宽度的定性关系,从计算结果中找到了ZnTe电光晶体在5.3 THz和6.2 THz等多个频点的探测盲点,这些探测盲点来自于ZnTe电光晶体与相应频点太赫兹波的栅格共振吸收。结合自制的大口径太赫兹光导天线和1 kHz脉冲重复频率的太赫兹时域光谱实验系统,通过差分探测技术,从实验上得到了太赫兹波极化方向与〈110〉型ZnTe晶体晶轴方向的六个最佳匹配角度,给出了太赫兹电场最大值随晶轴与太赫兹波极化方向之间夹角变化的曲线及经验公式,这将有利于在实践中对该现象的深入理解和对探测灵敏度的有效提高。  相似文献   

4.
用飞秒激光触发GaAs光电导体产生THz电磁波的研究   总被引:15,自引:0,他引:15  
报道了用半绝缘GaAs材料研制的光电导偶极天线在飞秒激光脉冲触发下辐射THz电磁波的实验结果.GaAs光电导偶极芯片的两个欧姆接触电极间隙为3mm,采用Si3N4薄膜绝缘保护,在540V直流偏置下被波长800nm,脉宽14fs,重复频率75MHz,平均功率130mW的飞秒激光脉冲触发时产生THz电磁波.用电光取样测量得到了THz电磁脉冲的时域波形和频谱分布.THz电磁波的辐射峰值位于0.5THz左右,频谱宽度大于2THz,脉冲宽度约为1ps.  相似文献   

5.
6.
太赫兹空气相干探测技术是一种宽带太赫兹探测技术。由于探测带宽仅受到探测激光脉冲宽度的影响,该技术的响应范围能够达到几十太赫兹,因此在实验上研发成功之后便成为了太赫兹技术领域一项重要的探测技术。详细介绍了太赫兹空气相干探测技术的实验原理和实验光路,总结了该技术最近几年的研究进展及改进措施,并对其探测性能和使用特点进行了分析与讨论。该研究可对初步使用太赫兹空气相干探测技术起到很好的参考作用。  相似文献   

7.
We develop a vector theory of cross-phase modulation (XPM) capable of describing nonlinear coupling between two pulses of different wavelengths and arbitrary states of polarization. We focus for simplicity on the pump-probe configuration and use it to investigate the temporal and spectral polarization effects occurring inside an optical fiber. Using the Stokes-vector formalism we show that the probe polarization changes in general through XPM-induced nonlinear polarization rotation. In the absence of dispersion-induced probe broadening, such nonlinear changes in the probe polarization do not affect the temporal shape of the probe pulse but produce a multipeak spectrum whose different spectral peaks have different states of polarization. When dispersive effects are included, even the shape of the probe pulse becomes polarization dependent, and different parts of the pulse develop different states of polarization. Such nonlinear polarization effects lead to novel phenomena such as polarization-dependent compression and splitting of the probe pulse.  相似文献   

8.
This paper describes a novel self-referencing interferometric method for measuring the time-dependent intensity and phase of ultrashort optical pulses. The technique, spectral phase interferometry for direct electric-field reconstruction (SPIDER), measures the interference between a pair of spectrally sheared replicas of the input pulse. Direct (noniterative) inversion of the interferogram yields the electric field of the input pulse without ambiguity. The interferogram, which is solely a function of frequency, is resolved with a spectrometer and recorded with a slow detector. Moreover, the geometry is entirely collinear and requires no moving components. This paper describes in detail the principle of operation, apparatus, and calibration of SPIDER and gives experimental examples of reconstructed pulses  相似文献   

9.
Applications of high-field terahertz pulses are attractive in physics and terahertz technology. In this study, two applications related to high-intensity terahertz pulses are demonstrated. The field enhancement effect by subwavelength metallic microstructures is utilized for terahertz excitation measurement. The spin precession dynamics in magnetic materials was induced by a terahertz magnetic field. Spin precession was amplified by one order of magnitude in amplitude by the enhanced magnetic terahertz field in orthoferrite ErFeO3 with metal microstructures. The induced spin dynamics was analyzed and explained by LLG-LCR model. Moreover, a detection method for terahertz pulses was developed using a cholesteric liquid crystal at room temperature without any electronic devices. The beam profile of terahertz pulses was visualized and compared to other methods such as the knife edge method using pyroelectric detector and micro-bolometer array. The liquid crystal terahertz imager is very simple and has good applicability as a portable terahertz-sensing card.  相似文献   

10.
太赫兹脉冲单次测量技术对于不可逆或者单次超快过程的太赫兹光谱研究具有重要意义。为了实现无畸变的高频率分辨率的太赫兹脉冲单次探测,利用光栅产生了一束具有倾斜前沿的飞秒探测脉冲,并利用该探测脉冲实现了对太赫兹脉冲时域电场波形的单次测量,测量时间范围达到20 ps,频谱覆盖0.1 THz~2.5 THz范围。且测量的结果与使用传统电光采样方法测量的结果相符合。对于基于光栅产生倾斜脉冲前沿的太赫兹脉冲单次测量方法进行了建模分析,获得了光栅和光学元件参数的选取,以及光路设计等指导性结论。  相似文献   

11.
运用透射式太赫兹时域光谱技术提取可区分回波样品折射率,主要依靠测得信号的相位差计算得到.具体有两种方法:一是利用参考脉冲和太赫兹波第一次透过样品的脉冲信号,二是利用太赫兹波第一次透过样品的脉冲信号和经样品内部反射两次后的第二个透射信号.实际操作中入射光束与样品表面法线存在夹角,该夹角不易测量,计算时通常忽略,这会最终引起折射率的测量误差,且该误差与选用的折射率提取方法有关.在分析两种方法因夹角引起误差的基础上,提出一种全新的折射率修正方法,该方法能从理论上消除夹角引起的误差,同时实验验证了该方法的有效性.  相似文献   

12.
由于太赫兹波电光取样探测技术中电光晶体存在的色散关系, 探测光的波长会直接影响到电光取样的探测带宽和效率.由于该色散关系的存在, 不同的电光晶体在电光取样中响应函数不同.本文研究了两种典型的电光晶体-碲化锌和磷化镓晶体的响应函数, 发现在选取的四种探测激光波长内(600 nm、800 nm、1200 nm、1600 nm), 800 nm的探测激光更合适碲化锌晶体, 1200 nm的激光更合适磷化镓晶体.对于不同厚度的晶体, 存在一个最优化的探测激光波长, 使得该晶体的电光响应函数有最宽的带宽.  相似文献   

13.
A review of the detection of pulsed terahertz waves via field-induced second harmonic generation in gaseous media is presented. The effects of the DC bias field strength, probe pulse energy, nonlinear susceptibility of the gases, gas pressure, and focusing conditions of the terahertz and optical beams are discussed. A Figure-of-merit, which characterizes the sensitivity of gases media, is introduced.  相似文献   

14.
为了改善全光逻辑门的相位差特性,对全光逻辑异或门的相位差进行了研究。采用细化分段模型对量子点半导体光放大器的动态过程进行建模,利用牛顿法和4阶龙格-库塔法求解三能级跃迁速率方程以及光场传输方程,实现了基于量子点半导体光放大器马赫-曾德尔干涉仪结构的全光逻辑异或门;研究了有源区长度、最大模式增益、输入抽运光功率以及输入抽运光脉冲宽度对通过干涉仪两臂探测光相位差的影响,同时讨论了探测光的相位差与输出光功率的关系。结果表明,增大有源区长度、最大模式增益以及输入抽运光功率,均能使探测光相位差增大;随着抽运光脉冲宽度增大,探测光相位差先增大而后趋于平缓,之后不断减小;有源区长度为2.0mm、最大模式增益为3000m-1、输入抽运光功率为5dBm、抽运光脉冲宽度为1.0ps时,最大相位差增加至0.3277π;随着探测光相位差增大,输出光功率增大;通过优化参量可以增大探测光的相位差,而输出光功率会随着探测光相位差的增大而增大。该研究为提高转换信号质量提供了参考。  相似文献   

15.
A simple fiber-based spectral interferometry setup is implemented for characterizing and monitoring the amplitude and phase of ultrafast temporal waveforms generated by optical differentiation with a long-period fiber grating (LPFG). In particular, the system is applied to characterize subpicosecond odd-symmetry Hermite-Gaussian (HG) pulses, consisting of two /spl pi/ phase-shifted temporal lobes, obtained by temporal differentiation of Gaussian-like pulses. This technique is ideally suited for optimizing the experiment conditions (e.g., wavelength shifting between the input pulse and LPFG transmission characteristic) so as to achieve a nearly ideal odd-symmetry HG temporal waveform (with a sharp discrete /spl pi/ phase shift at its center), of potential interest as a higher order soliton in dispersion-managed optical communication systems.  相似文献   

16.
A novel method to generate high-frequency phase-coded RF pulses using all-fiber components is proposed. The system consists of a mode-locked fiber laser (MLFL), a dispersive element, an unbalanced Mach-Zehnder interferometer (UMZI), an optical phase modulator (PM), and a photodetector (PD). The PM is incorporated in one arm of the UMZI. In the system, an ultrashort pulse generated by the MLFL is broadened and chirped after passing through the dispersive element, which is then sent to the UMZI, to get two time-delayed chirped pulses. By beating the time-delayed chirped pulses at the PD, an RF pulse with its frequency dependent on the time delay difference is obtained. The generated RF pulse can be phase coded if an encoding signal is applied to the PM. A theoretical model is presented which is verified by experiments. The generation of RF pulses with binary phase coding is also experimented  相似文献   

17.
We introduce a sensitive technique for the measurement of impulsively excited vibrational Raman modes. A linear sweep in the instantaneous frequency of the probe pulse isolates Raman sidebands from noise, enhancing sensitivity. The temporal interference between two stretched, time-delayed pump pulses allows us to selectively excite specific modes. The method is shown to be applicable to different phases of the samples.   相似文献   

18.
由于群速度的偏振依赖性,飞秒激光脉冲入射到双波长波片时出射光脉冲会分离为两个具有一定时间延迟的飞秒激光脉冲。从实验和理论模拟两方面研究了双波长波片导致的脉冲分离现象对飞秒激光双色场成丝辐射太赫兹(THz)波效率的影响。实验结果表明,脉冲分离导致的时间延迟会降低双色场辐射THz波的效率,可通过零级双波长波片缩短分离脉冲之间的时间延迟,有效提高THz波的产生效率。  相似文献   

19.
We propose an accurate ultrashort optical pulse reconstruction method based on Hilbert transform temporal interferometry with a feedback control technique. The use of this feedback control allows us to minimize the phase measurement errors associated with instabilities in the fiber-based interferometry system, e.g., caused by environmental fluctuations. The method is experimentally demonstrated by precisely characterizing picosecond pulses after linear dispersion through short sections (30 ~ 700 m) of conventional single-mode fiber. A three-fold improvement in the phase measurement accuracy has been achieved using the feedback control technique.  相似文献   

20.
We show the Sagnac interferometer as a two-parameter sensing device where nonreciprocal and reciprocal effects can be independently and simultaneously monitored. Phase shifts induced by nonreciprocal effects affect differently the counterpropagating beams in the loop and are accurately detected by a phase sensitive detection scheme. A probe for reciprocal effects is built by introducing a birefringence modulator inside the polarization-maintaining loop with its axes rotated with respect to the axes of the loop fiber. The resulting quadrature component of the demodulated signal is proportional to the phase shift induced by reciprocal effects at the probe site, making the interferometer suitable for dual parameter sensing. Demonstration of a electric/magnetic field sensor is presented  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号