首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnWO4 hollow clusters made up of nanorods were successfully prepared through a tripotassium citrate assisted hydrothermal process at 180 °C. The hollow clusters’ diameter was about 400 nm, and these clusters were made up of nanorods with a diameter of about 10 nm and a length of about 50 nm. X-ray power diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were used to characterize the structure and morphology of the synthesized products. Based on experiments, the growth of these hollow clusters followed an aggregation-Ostwald ripening process. The photocatalytic activities for aqueous Rhodamine B of samples were investigated, and it was seen that ZnWO4 hollow clusters exhibited a strong photocatalytic activity.  相似文献   

2.
A ZnWO4 nanocrystal catalyst with rod-like structure was first synthesized by powerful ultrasonic irradiation method at room temperature. Then, Ag was introduced to ZnWO4 nanorods by a photodeposited method. The as-synthesized Ag/ZnWO4 catalysts have been investigated by photocatalytic reaction tests and some physicochemical characterizations like XRD, BET, IR, TEM, EDX, XPS, PL, and UV–vis DRS. The results show that the prepared samples have good crystallinity and Ag addition can improve the photocatalytic performance of ZnWO4 in degradation of rhodamine-B (RhB) under UV light irradiation. The deposition of 1 wt% Ag over ZnWO4 leads to about a one-time increase in the photocatalytic performance with the reference of ZnWO4. The high performance of Ag/ZnWO4 could be attributed to the fact that the high dispersed Ag particles could act as electron traps promoting the electron–hole separation then enhancing the photocatalytic reaction.  相似文献   

3.
ZnWO4 powders with different morphologies were fabricated through a template-free hydrothermal method at 180 °C for 8 h in a wide pH range. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible and luminescence spectrophotometers were applied to study the effects of pH values on crystallinity, morphology, optical and luminescence properties. The XRD results showed that the WO3 + ZnWO4, ZnWO4, and ZnO phases could form after hydrothermal processing at 180 °C for 8 h with the pH values of 1, 3-11, and 13, respectively. The SEM and TEM observation revealed that the morphological transformation of ZnWO4 powders occurred with an increase in pH values as follows: star anise-, peony-, and desert rose-like microstructures and soya bean- and rod-like nanostructures. The highest luminescence intensity was found to be in sample consisting of star anise-like crystallites among all the samples due to the presence of larger particles with high crystallinity resulted from the favorable pH under the current hydrothermal conditions.  相似文献   

4.
Spinel ZnCo2O4 nanorods were synthesized by a simple template-free hydrothermal method in the presence of zinc chloride, cobalt chloride, glucose, and urea. The phase structure, morphology and chemical composition have been characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED). The results showed that the typically porous and poly-crystalline structure was successfully grown on the surface of ZnCo2O4 nanorods. The ZnCo2O4 nanorods were further applied to remove methyl blue (MB), which was used as a model of organic pollutants in aqueous solution. In particular, the maximum equilibrium adsorption capacity of MB in ZnCo2O4 nanorods reaches up to 2400?mg/g, which is higher than that of most adsorbents. The adsorption isotherms and kinetics followed standard Langmuir and pseudo-second-order models, respectively. MB adsorption decreased with increasing solution pH at pH?>?7 implying that MB adsorption on ZnCo2O4 nanorods may via chemisorption between negatively charged MB molecular and positively charged adsorption sites on the surface of ZnCo2O4 nanorods. This study provides great promise of using ZnCo2O4 nanorods as adsorbent for removal of pollutant dyes.  相似文献   

5.
A Cu2O quantum dot/graphene-TiO2 composite, a novel material, was successfully synthesized using a facile hydrothermal method. The hydrothermal reaction was used to load the Cu2O and TiO2 particles onto graphene sheets, and the resulting photocatalysts were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), Raman spectroscopy, and ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy (DRS). UV spectrophotometry was employed to measure the decrease in the concentration of rhodamine B (RhB), methylene blue trihydrate (MB), and reactive black B (RBB) dyes in an aqueous solution after degradation with the photocatalysts under irradiation with visible light. The results indicate that the quantum dot-sized Cu2O is a promising material that contributes to the photocatalytic activity of Cu2O quantum dot/graphene-TiO2 composites.  相似文献   

6.
Nanosized Bi2WO6, PbWO4 and ZnWO4 photocatalysts were synthesized by a mild hydrothermal crystallization process. The physical and photophysical properties of the catalysts were characterized by X-ray diffractometry, Brunauer-Emmet-Teller surface area and porosity measurements, transmission electron microscopy, Raman spectra, and diffused reflectance spectroscopy. The rhodamine-B photodegradation in aqueous medium was employed as a probe reaction to test the photoactivities of the as-prepared samples under four irradiation wavelengths. Bi2WO6 not only presented the photocatalytic activity in the wide spectral scope, including UV and visible light but also exhibited the strong photosensitized capability to transform RhB under visible light irradiation (λ > 490 nm). ZnWO4 only displayed relatively high photoactivity under UV irradiation. However, PbWO4 showed poor photoactivity under any light irradiation. On the basis of the calculated density functional theory (DFT), the photocatalytic mechanisms were discussed.  相似文献   

7.
Porous zinc ferrite (ZnFe2O4) nanorods have been synthesized by the thermal decomposition of ZnFe2(C2O4)3 nanorods precursor, which was prepared by template-, surfactant-free solvothermal method. The morphology and structure of the obtained ZnFe2(C2O4)3 nanorods precursor and porous ZnFe2O4 nanorods were characterized by X-ray powder diffraction, transmission electron microscopy, field emission scanning electron microscopy and high-resolution transmission electron microscopy. The results indicated that the as-synthesized ZnFe2O4 retained the precursor morphology of 1D nanorods with diameters of 100–200 nm and lengths of several micrometers and plenty of nanoparticles were interconnected to each other to form porous nanorods. The as-prepared ZnFe2O4 nanorods as a kind of subsequently light-driven photocatalyst exhibited good photocatalytic decomposition activity for methylene blue (MB).  相似文献   

8.
Three-dimensional (3D) sea-urchin-like hierarchical TiO2 microspheres were synthesized by a template-free hydrothermal method. The effects of preparation parameters on the microstructure of 3D sea-urchin-like hierarchical TiO2 were investigated using scanning electron microscopy (SEM), transmission electron microscopy, X-ray diffractometer, energy-dispersive X-ray spectrometer and Brunauer–Emmett–Teller technologies. The growth mechanism and photocatalytic activity of 3D sea-urchin-like TiO2 microspheres were discussed. The results of electron microscopy characterizations SEM showed that the microspheres were consisted of numerous one-dimensional (1D) nanorods. A three-step growth model: oxygenated to be 1D nanorods, self-assembly and protonation, was proposed to illustrate the growth mechanism of sea-urchin-like structures. The synthesized 3D sea-urchin-like hierarchical TiO2 microspheres exhibited a better photocatalytic activity for photodegradation of rhodamine B under sunlight irradiation compared to that of P25, which was attributed to the special 3D hierarchical nanostructure, the increased number of surface active sites and anatase crystal structure.  相似文献   

9.
Mesoporous ZnWO4 was prepared with the template of PAMAM. The as-formed samples were characterized by X-ray diffraction (XRD), nitrogen absorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectroscopy (DRS). It is found that the size of pore is in the range of 5-22 nm and that the porosity of ZnWO4 is composed of aggregated ZnWO4 nanoparticles. The photocatalytic activities towards degradation of rhodamine B (RhB) and malachite green (MG) under UV light has been investigated. The formation mechanism of mesoporous structures is proposed.  相似文献   

10.
The CePO4/C nanocomposite with core-shell nanostructure has been successfully synthesized using glucose and CePO4 by a facile and simple hydrothermal method at 160 °C for 24 h. The new material consists of a monoclinic CePO4 core and an amorphous-C shell. The TEM micrograph indicated that the CePO4/C nanocomposite was core-shell nanorods. The effects of glucose concentration on the C shells and luminescent intensity of CePO4/C nanocomposite were investigated. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL). This method is simple, low-cost and does not need any surfactant.  相似文献   

11.
In this work, BiOIO3 nanoplatelets were successfully prepared by a simple hydrothermal method. The as-prepared samples were characterised by energy-dispersive spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, X-ray powder diffraction and ultraviolet visible diffuse reflectance spectroscopy. The photocatalytic activities of the as-prepared BiOIO3 nanoplatelets were evaluated by photodegradation of rhodamine B (RhB) under simulated solar light. The results showed that the change of temperature within a certain range has almost no influence on the morphology and size of BiOIO3 nanoplatelets. However, it had an obvious effect on the photocatalytic performance of BiOIO3 nanoplatelets. The results showed that the BiOIO3 sample synthesised at 130 °C exhibited the highest photocatalytic activities compared to others, with RhB completely decomposed in 80 min. The products with proper crystallinity formed at 130 °C have the optimal rate of RhB photodegradation. It indicated that the most favourable crystallinity made it beneficial to improve the photocatalytic activity. The possible mechanism of the photocatalytic reaction based on deep analysis and the experimental results was discussed in detail.  相似文献   

12.
《材料科学技术学报》2019,35(10):2312-2318
The one-dimensional ZnWO4@SnWO4 photocatalyst with a core-shell heterostructure was successfully constructed by a simple two-step method. It is interesting to note that ZnWO4@SnWO4 composite photocatalyst owns a higher photocatalytic activity for RhB degradation under visible light irradiation. The introduction of SnWO4 shell layer, which forms a clear heterogenous interface between ZnWO4 and SnWO4, increases the photo-absorption efficiency of ZnWO4 nanorods. In addition, its band-edge absorption evidently shifts toward the visible region. Based on the photoelectrochemical (PEC) and electron spin resonance (ESR) measurements, it is found that the photocatalytic activity was attributed to the efficient separation and transfer of photo-generated charge carriers. Hence, they can produced more hydroxyl radical (OH) as the main active species in the photocatalytic reaction process.  相似文献   

13.
Metal ion doped TiO2 nanoparticles supported on ZSM-5 zeolite (M-TiO2/ZSM-5 composites, M = Fe or Ni) were synthesized by hydrothermal method. The prepared composites were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV–vis diffuse reflectance spectra (DRS). The photocatalytic activities of composites were evaluated by degradation of yellow GX aqueous solution under ambient condition. Fe-TiO2/ZSM-5 composite showed to be more efficient catalyst for degradation of dye molecules as compared with Ni-TiO2/ZSM-5 and TiO2/ZSM-5. Its higher photocatalytic activity is attributed to the effective separation of charge carriers that will be discussed in this paper in detail.  相似文献   

14.
《Materials Letters》2007,61(23-24):4595-4598
ZnWO4 nano-particles were successfully synthesized by a molten salt method at 300 °C. The as-prepared powders were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and photoluminescent spectra techniques (PL), respectively. The size and morphology of ZnWO4 nano-particles were affected by such conditions as the calcining time and the weight ratio of the salt to the ZnWO4 precursor. The resultant sample is a pure phase of ZnWO4 without any impurities. The PL spectra results showed that the optical property of ZnWO4 crystallites obviously relied on their particle sizes.  相似文献   

15.
Wen-hui Li 《Materials Letters》2008,62(25):4149-4151
Single crystalline Co3O4 nanorods have been successfully synthesized through thermal decomposition of the precursor, which was obtained by the microwave-assisted hydrothermal route. The obtained sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectrometer (FT-IR), and X-ray photoelectron spectroscopy (XPS). The results confirm that the resulting oxide was pure single-crystalline Co3O4 nanorods. The optical property test indicates that the absorption peak of the nanorods shifts towards short wavelength. And the blue shift phenomenon might be ascribed to the quantum effect.  相似文献   

16.
Nanocrystalline BiCu2VO6 was successfully synthesized by a facile polymeric citrate complex method. The samples were characterized by X-ray diffraction (XRD) analyses, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflectance spectra (DRS), thermogravimetric analyses (TG) and differential thermal analyses (DTA). BiCu2VO6 showed photocatalytic activity for the degradation of RhB under visible light irradiations with the coexistence of H2O2. As compared to BiCu2VO6 prepared via a solid state reaction, BiCu2VO6 prepared via a polymeric citrate complex method showed higher photocatalytic activity. The visible light photocatalytic activity of BiCu2VO6 was also proposed.  相似文献   

17.
Manganese vanadate nanobelts have been synthesised by a simple hydrothermal process using polymer polyvinyl pyrrolidone as the surfactant by adjusting the pH value. The X-ray diffraction, selected area electron diffraction and the high-resolution transmission electron microscopy (TEM) show that the manganese vanadate nanobelts are composed of a single crystalline monoclinic Mn2V2O7 phase. Scanning electron microscopy and TEM observations show that the thickness, width and length of the nanobelts are 20 nm, 350 nm–1 μm and several dozens to several hundreds of micrometres, respectively. The photocatalytic activities of the manganese vanadate nanobelts have been evaluated by the photocatalytic degradation of methylene blue (MB) in an aqueous solution as a model pollutant under the solar light irradiation. After 4 h of the irradiation by the solar light, the MB solution with the volume of 10 mL and the concentration of 10 mg·mL?1 can be totally degraded using 10 mg manganese vanadate nanobelts.  相似文献   

18.
Hemisphere-like F-doped anatase TiO2 has been synthesized by hydrothermal treatment of TiF4 aqueous solution in the presence of starch at 130 °C for 10 h, and then calcined at 450 °C for 2.5 h in air. The as-synthesized product has been investigated by photocatalytic reaction test and characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), and UV–Vis diffuse reflectance spectra (DRS). The results showed that fluorine was successfully doped into the TiO2 hemispheres. The F-doped TiO2 hemispheres showed high visible light activity in degradation of acid orange II, which could be attributed to the creation of oxygen vacancies and good crystallinity.  相似文献   

19.
Hongrui Peng 《Materials Letters》2009,63(16):1404-1406
MnV2O6 nanostructures including nanorods, nanobelts, and nanosheets, have been synthesized by a facile hydrothermal reaction between Mn(CH3COO)2·4H2O and commercial V2O5. The synthesized products are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The influences of synthetic parameters, such as, reaction time, temperature and medium, on the morphologies of the resulting products have been investigated. As the reaction temperatures increase from 120 °C to 180 °C, MnV2O6 nanorods and nanobelts are obtained, respectively. The time-dependent experimental results at 180 °C reveal that the sizes of MnV2O6 nanobelts increase gradually with the reaction proceeding. Interestingly, as the reaction is carried out with the aid of H2O2 solution, flower-like MnV2O6 nanosheets are formed.  相似文献   

20.
Large-scale, well-aligned single crystalline TiO2 nanorod arrays were prepared on the pre-treated glass substrate by a hydrothermal approach. The as-prepared TiO2 nanorod arrays were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. X-ray diffraction results show that the main phase of TiO2 is rutile. Scanning electron microscopy and transmission electron microscopy results demonstrate that the large-scale TiO2 nanorod arrays grown on the pre-treated glass substrate are well-aligned single crystal and grow along [0 0 1] direction. The average diameter and length of the nanorods are approximately 21 and 400 nm, respectively. The photocatalytic activity of TiO2 nanorod arrays was investigated by measuring the photodegradation rate of methyl blue aqueous solution under UV irradiation (254 nm). And the results indicate that TiO2 nanorod arrays exhibit relatively higher photocatalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号