共查询到16条相似文献,搜索用时 82 毫秒
1.
2.
确定CO2最小混相压力的经验公式法 总被引:1,自引:0,他引:1
CO2最小混相压力是确定油藏能否采用CO2混相驱的重要依据,测定最小混相压力的最好方法是细管实验法,但室内实验法测定费时、费力。目前,确定CO2最小混相压力的方法很多,其中经验公式法是最简单的一种方法。该文将介绍一些常用的确定CO2最小混相压力的经验公式及一种最新的经验公式,计算结果与实验值进行分析.并对这些经验公式进行对比,使读者在以后选用公式过程中更具有针对性。 相似文献
3.
用界面张力法测定CO2与原油的最小混相压力 总被引:1,自引:0,他引:1
采用悬滴法,测定了在模拟地层温度为356.5K、压力为8.54~23.43MPa时的CO2与原油间的界面张力.实验发现,CO2与原油间的界面张力随压力的增加近似呈线性下降趋势.对该数据进行了线性回归,并用外推法计算出当界面张力为零时的最小混相压力为24.17MPa,与实验观测达到一次接触混相状态时的压力(23.43MPa)相比,相对误差为3.16%.采用界面张力确定CO2与原油间的最小混相压力,既可通过直接观测接触混相状态确定,也可利用所测界面张力数据进行估算,操作简单易行,且耗时少. 相似文献
4.
针对CO_2-EOR原油组分对混相能力影响的问题,应用界面张力消失法设计了不同碳数烃组分、不同族烃组分、不同含量烃组分混合模拟油与CO_2的最小混相压力实验,分析不同族烃组分与CO_2最小混相压力的变化规律,探寻原油中影响CO_2驱最小混相压力的关键组分。研究表明:原油中不同组分与CO_2的最小混相压力不同,相同碳数烃组分最小混相压力依次为:烷烃、环烷烃、芳香烃;同族烃的碳数越小,最小混相压力越小;相同碳数烃类的混合组分模拟油的最小混相压力小于单一烃组分的最小混相压力;原油中低碳数烷烃含量增加,最小混相压力降低,高碳数芳香烃含量增加,最小混相压力升高。该研究结果为多种类型油藏实施CO_2驱提高采收率提供了数据材料及理论支撑。 相似文献
5.
CO2驱最小混相压力的测定与预测 总被引:7,自引:2,他引:7
在细管驱替实验数据的基础上,对确定CO2驱最小混相压力的各种方法进行了评价.对于细管驱替实验,混相条件的判断标准应该是采收率随驱替压力变化曲线上的拐点,而不是高的采收率.经验关联式计算最小混相压力简单、方便,但可靠性较差,且对于高温、高CH4和N2含量、高气油比等比较特殊的原油,须进一步增加关联参数.状态方程能较准确快速地计算最小混相压力,但对混相函数值难以给出一个实用的判断标准,计算时应根据泡点压力变化、温度、CO2浓度和混相函数值综合确定体系的最小混相压力.综合研究对比表明,细管驱替实验仍是最准确的、不可替代的确定最小混相压力的方法. 相似文献
6.
7.
混相压力是确定油藏能否采用混相驱的重要依据,测定混相压力的最好方法是细管实验法,但室内实验法测定费时费力。基于细管实验的结果,结合“混相函数”的概念,提出了一种利用组分分割和组合的方法,即将C1^+组分分割为几种以后,对利用修正的Redlich—kwong状态方程确定CO2最小混相压力的方法进行了研究和改进,克服了原方法中重组分临界值难以确定的缺点;同时提高了温度对计算结果的敏感性。计算结果与实验结果对比表明,确定的最小混相压力误差小于5%,充分证明该方法的有效性。 相似文献
8.
9.
在调研大量相关文献的基础上,详细综述了中国油气田50多年的注CO2提高采收率实践。首先依据中国各大油区公开发表的文献实验数据,从室内机理实验统计CO2驱油关键技术参数,对比分析原始地层压力与最小混相压力。其次,根据不同储层类型,总结了国内在低渗透油藏、高含水油田、复杂断块、稠油油藏、碳酸盐岩油藏及煤层气等储集层开展的注CO2矿场项目。现场试验结果显示,提高采收率幅度为1.07%~6.00%,换油率为0.98~2.49 t/t。最后结合矿场已有经验及存在问题,提出CO2驱油技术攻关方向。 相似文献
10.
CO2驱最小混相压力的测定与预测 总被引:1,自引:0,他引:1
在细管驱替实验数据的基础上,对确定CO2驱最小混相压力的各种方法进行了评价。对于细管驱替实验,混相条件的判断标准应该是采收率随驱替压力变化曲线上的拐点,而不是高的采收率。经验关联式计算最小混相压力简单、方便,但可靠性较差,且对于高温、高CH4和N2含量、高气油比等比较特殊的原油,须进一步增加关联参数。状态方程能较准确快速地计算最小混相压力,但对混相函数值难以给出一个实用的判断标准,计算时应根据泡点压力变化、温度、CO2浓度和混相函数值综合确定体系的最小混相压力。综合研究对比表明,细管驱替实验仍是最准确的、不可替代的确定最小混相压力的方法。 相似文献
11.
根据吉林油田某低渗透区块的油藏条件,运用数值模拟方法研究不同驱替方式下的驱油效果。数模结果显示,交替驱替方式优于注水方式和连续气驱方式,能大幅度提高原油采收率。在交替驱过程中,气段塞和水段塞的先后顺序对采收率有显著的影响,气水交替驱优于水气交替驱,随着注气速度的增加,采收率的差值也逐渐增加。气水交替驱注入CO2能够和原油充分接触,越早注入CO2,对提高原油采收率越有利。该研究不仅为低渗透油田CO2驱油技术提供了理论基础,而且对于国家下一步进行CO2驱油和埋存潜力评价及规划具有重要的借鉴意义。 相似文献
12.
为了进一步研究CO2驱过程中最小混相压力(MMP)的动态变化,为油气CO2驱产出伴生气回注提供理论依据,针对吉林油田CO2驱示范区的油藏工况,利用经验模型法和PVT方法分析计算MMP,进行了CO2驱过程中油气组分及MMP变化的动态分析,研究了MMP的变化规律及其影响因素。结果表明,2种方法所得MMP差值为4%~8%,与实验值的误差为5.36%。在油藏CO2驱生产过程中,由于CO2的抽提作用使原油中的中轻质组分(C2~C6)减少,导致MMP增大。注入气的组分对MMP也有较大影响,纯CO2中加入C2H6等轻质组分会降低MMP。CO2驱油藏产出气中含有CO2,CH4和(C2~C4)等轻质组分,可以将其与纯CO2混合后回注,当... 相似文献
13.
为确定CO2混相驱油藏合理采收率,基于水驱油分流量方程、Buckley-Leverett水驱油非活塞理论及CO2混相驱特性(即混相驱油藏不存在界面张力,各相渗透率与对应相饱和度成正比),将水驱油分流量方程进行适当改进,其物理性影响因素更加明显,更适用于CO2混相驱油藏,并推导出CO2气体分流系数关系式和原油采出程度与累积注气量之间的关系式,用来设计和预测CO2混相驱开发参数。同时对采出程度与累计注气量之间的数学关系式求导,得到了注CO2混相驱油藏合理采收率导数方程的数学模型,可为计算合理注入CO2量及注CO2混相驱最终采收率提供参考。 相似文献
14.
仉莉 《油气地质与采收率》2020,27(1):45-49
CO2驱提高原油采收率技术由于兼具高效、节能减排等优势在中外发展迅速,但胜利油田滩坝砂油藏CO2驱最小混相压力高,混相驱替难以进行,驱油效率较低。为此设计了一种兼顾增效和增溶作用的化学体系,可以显著降低CO2与原油之间的最小混相压力,改善非混相驱替效果。首先通过测定CO2中原油的抽提量及原油中CO2的溶解量,筛选出相应的增效剂DYJ-13和增溶剂S6。进一步对两种化学剂进行复配,系统考察了不同配比对CO2萃取抽提原油能力的影响,结果表明,随体系中DYJ-13质量分数的增加,增效因子先上升后下降,增溶因子变化不大,从而确定出最优的化学体系DYJ-13∶S6=3∶7。最后采用长细管驱替实验方法,测定了加入质量分数为3%的复配化学体系后,试验区原油与CO2之间最小混相压力由31.65 MPa降至24.60 MPa,降低幅度达22%。所研发的化学体系具有较高的应用潜力,建议开展单井试验。 相似文献
15.
不同油藏压力下CO2驱最小混相压力实验研究 总被引:1,自引:0,他引:1
CO2-原油体系的最小混相压力是影响CO2驱开发效果的关键因素。随油藏开发阶段的不断深入,当油藏压力低于原始饱和压力后,溶解在原油中的溶解气会部分脱出。油藏流体组分及其高压物性也会发生变化,影响CO2-原油体系的最小混相压力,利用原始地层流体样品测试得到的最小混相压力不再适用。为此,以中国西部某油田8个典型区块为例,进行细管实验测试和多组分数值模拟,对不同油藏压力下的最小混相压力进行系统研究。与其他油田相比,研究区各油藏油样的C1摩尔含量较高,为31.12%~51.69%,平均为43.25%;C2-C6摩尔含量较低,为8.0%~18.48%,平均仅为11.3%。细管实验和数值模拟结果表明,在原始地层压力下,CO2均与8个典型区块地层原油样品发生混相驱替,但不同区块CO2驱最小混相压力差异很大,其值为17.60~41.18 MPa。当油藏压力低于原始饱和压力后,CO2驱最小混相压力主要呈微小幅度下降的趋势。随脱气压力进一步降低,油相组分构成中,C1N2摩尔含量呈递减趋势、C7+和C24+组分呈递增趋势,而中间组分(C2和C3+)摩尔含量变化较小。在各级脱气压力下,脱出气体以C1为主,中间组分摩尔含量仅在最后一级脱气压力下急剧升高。CO2-原油混相带出现在注入CO2波及前缘靠近注入端的位置,混相带随着驱替的进行而逐渐变宽。 相似文献
16.
为了探索较大幅度提高高含水期复杂断块油田剩余油采收率,提出了CO2复合驱方式进行剩余油开采对策并在矿场先导试验井组取得了显著的增油降水效果,但对CO2复合驱油体系微观增油机理的相关研究较少,亟需开展这方面的基础研究。基于CT扫描结果,结合油藏开发实际,明确了滴状和膜状剩余油为难以动用的2种剩余油类型;构建了溶解油滴模型和剥离油膜模型,利用分子动力学方法进行模拟。溶解油滴模拟结果表明,CO2扩散至油滴中,增加其体积,然后油滴分子逐渐溶解在驱油体系中;剥离油膜分子动力学模拟结果表明,CO2在油相中先形成扩散通道,随后CO2优先通过扩散通道至岩石表面,CO2在表面上形成氢键而产生吸附。 相似文献