首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose an adaptive rank-estimation method for the additive white or colored Gaussian noise model. The main contribution of this paper has three parts. (1) We investigate the rank mismatch problem in the group-blind multiuser detector of Wang and Host-Madsen (see IEEE J. Select. Areas Commun., vol.17, p.1971-1984, Nov. 1999), and find that underestimating the rank causes significant performance degradation, whereas, rank overestimation can achieve performance gain in the low signal-to-noise-ratio (SNR) region. However, rank overestimation can lead to inaccurate channel estimation, which degrades the detector performance significantly in the high SNR region. (2) We propose a heuristic criterion for initial rank estimation which is robust for nonwhite noise cases. (3) In order to mitigate the rank mismatch problem, we introduce a hypothesis testing criterion for rank and signal subspace decisions, which selects the most probable rank for the group-blind detectors. Simulation results show that the performance of the group-blind detector using this adaptive rank estimation algorithm is comparable to the group-blind with perfect knowledge of the rank, and even better in the low-to-medium SNR region.  相似文献   

2.
Group-blind multiuser detection for uplink CDMA   总被引:16,自引:0,他引:16  
Previously developed blind techniques for multiuser detection in code division multiple access (CDMA) systems lead to several near-far resistant adaptive receivers for demodulating a given user's data with the prior knowledge of only the spreading sequence of that user. In the CDMA uplink, however, typically the base station receiver has the knowledge of the spreading sequences of all the users within the cell, but not that of the users from other cells. In this paper, group-blind techniques are developed for multiuser detection in such scenarios. These new techniques make use of the spreading sequences and the estimated multipath channels of all known users to suppress the intracell interference, while blindly suppressing the intercell interference. Several forms of group-blind linear detectors are developed based on different criteria. Moreover, group-blind multiuser detection in the presence of correlated noise is also considered. In this case, two receiving antennas are needed for channel estimation and signal separation. Simulation results demonstrate that the proposed group-blind linear multiuser detection techniques offer substantial performance gains over the blind linear multiuser detection methods in a CDMA uplink environment  相似文献   

3.
The linear subspace-based blind and group-blind multiuser detectors recently developed represent a robust and efficient adaptive multiuser detection technique for code-division multiple-access (CDMA) systems. In this paper, we consider adaptive transmitter optimization strategies for CDMA systems operating in fading multipath environments in which these detectors are employed. We make use of more recent results on the analytical performance of these blind and group-blind receivers in the design and analysis of the transmitter optimization techniques. In particular, we develop a maximum-eigenvector-based method of optimizing spreading codes for given channel conditions and a utility-based power control algorithm for CDMA systems with blind or group-blind multiuser detection. We also design a receiver incorporating joint optimization of spreading codes and transmitter power by combining these algorithms in an iterative configuration. We will see that the utility-based power control algorithm allows us to efficiently set performance goals through utility functions for users in heterogeneous traffic environments and that spreading code optimization allows us to achieve these goals with lower transmit power. The signal processing algorithms presented here maintain the blind (or group-blind) nature of the receiver and are distributed, i.e., all power and spreading code adjustments can be made using only locally available information.  相似文献   

4.
An adaptive asynchronous code-division multiple-access (CDMA) multiuser detector is proposed that uses a recently derived extended Kalman filter based algorithm (see Lim, T.J. and Rasmussen, L.K., IEEE Trans. Commun., vol.45, p.213-20, 1997) to perform joint data detection and parameter tracking in frequency-selective Rayleigh fading channels. A receiver structure based on this adaptive multiuser detector is presented and its performance in terms of parameter tracking and bit error rate (BER) is investigated. The receiver is a form of an adaptive RAKE that exploits multipaths to achieve performance gain  相似文献   

5.
Group-blind multiuser detectors for uplink code-division multiple-access (CDMA) were recently developed by Wang and Host-Madsen. These detectors make use of the spreading sequences of known users to construct a group constraint to suppress the intracell interference. However, such techniques demand the estimation of the multipath channels and the delays of the known users. In this paper, several improved blind linear detectors are developed for CDMA in fading multipath channels. The proposed detectors utilize the correlation information between consecutively received signals to generate the corresponding group constraint. It is shown that by incorporating this group constraint, the proposed detectors can provide different performance gains in both uplink and downlink environments. Compared with the previously reported group-blind detectors, our new methods only need to estimate the multipath channel of the desired user and do not require the channel estimation of other users. Simulation results demonstrate that the proposed detectors outperform the conventional blind linear multiuser detectors.  相似文献   

6.
一种基于MOE的盲自适应的多用户检测器   总被引:1,自引:0,他引:1  
盲自适应多用户检测器由于既能实时跟踪信道信息及用户信息,又不需要发送训练序列而成为研究的热点,但一般的盲自适应多用户检测技术存在收敛速度慢的弱点。提出一种基于MOE(最小输出能量)的盲自适应多用户检测器,通过合理地选取时变步长,可有效地提高多用户检测器的收敛速度,从而提高系统的性能。  相似文献   

7.
In this paper, a turbo receiver structure is proposed for the uplink of coded code-division multiple-access (CDMA) systems in the presence of unknown users. The proposed receiver consists of two stages following each other. The first stage performs soft interference cancellation and group-blind linear minimum mean square error (MMSE) filtering, and the second stage performs channel decoding. The proposed group-blind linear MMSE filter suppresses the residual multiple-access interference (MAI) from known users based on the spreading sequences and the channel characteristics of these users while suppressing the interference from other unknown users using a subspace-based blind method. The proposed receiver is suitable for suppressing intercell interference in heavily loaded CDMA systems. Since the knowledge of the number of unknown users is crucial for the proposed receiver structure, a novel estimator is also proposed to estimate the number of unknown users in the system by exploiting the statistical properties of the received signal. Simulation results demonstrate that the proposed estimator can provide the number of unknown users with high accuracy; in addition, the proposed group-blind receiver integrated with the new estimator can significantly outperform the conventional turbo multiuser detector in the presence of unknown users.   相似文献   

8.
In blind (or group-blind) linear multiuser detection, the detector is estimated from the received signals, with the prior knowledge of only the signature waveform of the desired user (or the signature waveforms of some but not all users). The performance of a number of such estimated linear detectors, including the direct-matrix-inversion (DMI) blind linear minimum mean square error (MMSE) detector, the subspace blind linear MMSE detector, and the form-I and form-II group-blind linear hybrid detectors, are analyzed. Asymptotic limit theorems for each of the estimates of these detectors (when the signal sample size is large) are established, based on which approximate expressions for the average output signal-to-interference-plus-noise ratios (SINRs) and bit-error rates (BERs) are given. To gain insights on these analytical results, the performance of these detectors in an equicorrelated code-division multiple-acces (CDMA) system is compared. Examples are provided to demonstrate the excellent match between the theory developed here and the simulation results  相似文献   

9.
Recently developed subspace techniques for blind adaptive multiuser detection are briefly reviewed first. In particular, blind methods based on signal subspace tracking for adapting linear multiuser detectors in AWGN CDMA channels are considered, as well as extensions of these techniques to frequency selective fading channels, dispersive channels, and antenna array spatial processing. In addition, subspace‐based nonlinear adaptive techniques for robust blind multiuser detection in non‐Gaussian ambient noise channels are also described. Several new techniques are then developed within the subspace framework for blind joint channel estimation and multiuser detection, under some specific channel conditions. These include (1) an adaptive receiver structure for joint multiuser detection and equalization in dispersive CDMA channels, (2) a subspace method for joint multiuser detection and equalization in unknown correlated noise, and (3) a method for joint interference suppression and channel tracking in time‐varying fading channels. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Space-time turbo equalization in frequency-selective MIMO channels   总被引:11,自引:0,他引:11  
A computationally efficient space-time turbo equalization algorithm is derived for frequency-selective multiple-input-multiple-output (MIMO) channels. The algorithm is an extension of the iterative equalization algorithm by Reynolds and Wang (see Signal Processing, vol.81, no.5, p.989-995, 2001) for frequency-selective fading channels and of iterative multiuser detection for code-division multiple-access (CDMA) systems by Wang and Poor (see IEEE Trans. Commun., vol.47, p.1046-1061, 1999). The proposed algorithm is implemented as a MIMO detector consisting of a soft-input-soft-output (SISO) linear MMSE detector followed by SISO channel decoders for the multiple users. The detector first forms a soft replica of each composite interfering signal using the log likelihood ratio (LLR), fed back from the SISO channel decoders, of the transmitted coded symbols and subtracts it from the received signal vector. Linear adaptive filtering then takes place to suppress the interference residuals: filter taps are adjusted based on the minimum mean square error (MMSE) criterion. The LLR is then calculated for adaptive filter output. This process is repeated in an iterative fashion to enhance signal-detection performance. This paper also discusses the performance sensitivity of the proposed algorithm to channel-estimation error. A channel-estimation scheme is introduced that works with the iterative MIMO equalization process to reduce estimation errors.  相似文献   

11.
The demand for performance and capacity in cellular systems has generated a great deal of interest in the development of advanced signal processing techniques to optimize the use of system resources. In particular, much work has been done on space-time processing in which multiple transmit/receive antennas are used in conjunction with coding to exploit spatial diversity. We consider space-time multiuser detection using multiple transmit and receive antennas for code-division multiple-access (CDMA) communications. We compare, via analytical bit-error-probability calculations, user capacity, and complexity, two linear receiver structures for different antenna configurations. Motivated by its appearance in a number of third-generation (3G) wideband CDMA standards, we use the Alamouti (see IEEE J. Select. Areas Commun., vol.16, p.1451-58, Oct. 1998) space-time block code for two-transmit-antenna configurations. We also develop blind adaptive implementations for the two transmit/two receive antenna case for synchronous CDMA in flat-fading channels and for asynchronous CDMA, in fading multipath channels. Finally, we present simulation results for the blind adaptive implementations  相似文献   

12.
In blind and group-blind multiuser detection, different detectors can be designed using either the sample data covariance matrix directly or its eigencomponents. Due to finite-sample effect in practice, their performance deviates from the corresponding optimum. A perturbation technique is developed rigorously and systematically to analyze those detectors in this work. Subject to the assumption that the first-order perturbation dominates, corresponding results can be applied to a practical system of a given sample size. In particular, performance of the following typical detectors is studied for either flat or estimated multipath channels: direct-matrix-inversion (DMI) blind minimum mean-square error (MMSE) detector, subspace blind MMSE detector, direct zero-forcing (ZF) detector, subspace ZF detector, and group-blind hybrid detector. Simulation examples further verify various analytical results.  相似文献   

13.
We develop a blind adaptive multiuser detector for synchronous code-division multiple access (CDMA) with a noise-whitening filter. The triangular structure of the noise-whitened model ensures complete resolution of detection ambiguities. To further improve the symbol error probability performance, we introduce decision feedback in our detector similar to the decorrelating derision-feedback detector (DDFD), thus forming the decision-feedback blind adaptive multiuser detector (DFBD). Simulations indicate that the performance of the DFBD is very close to that of the DDFD in additive white Gaussian noise (AWGN) channels. In Rician fading channels, the DFBD can track the slowly varying channels well and has a symbol error probability performance approaching that of the DDFD, which requires the knowledge of users' energies. The blind adaptive and decision-feedback blind adaptive multiuser detectors proposed here do not, however, require that knowledge  相似文献   

14.
We study multiuser receiver design and analysis for synchronous code-division multiple-access (CDMA) channels with time-varying Rayleigh fading. Starting from an error probability criterion, we first derive a near-optimum receiver for this channel that admits a detector-estimator decomposition, has certain asymptotic optimality properties and a complexity which is independent of the length of the observation interval. The performance of this detector is analytically characterized and contrasted with that of the optimal multiuser detector for the time-invariant (or static) CDMA Rayleigh-fading channel when it is implemented over the time-varying channel. Notable among our conclusions is the fact that, unlike the static channel multiuser detector, the time-varying channel detector is able to withstand not only the estimated interference from the other system users, but also, the residual interference (that cannot be estimated) arising out of imperfect estimation of the interferer fading parameters. Using estimation error covariance information, this detector shows flexibility in accommodating a wide range of interferer fading conditions  相似文献   

15.
This paper presents an adaptive decision feedback equalizer (DFE) based multiuser receiver for code division multiple access (CDMA) systems over smoothly time-varying multipath fading channels using the two-step LMS-type algorithm. The frequency-selective fading channel is modeled as a tapped-delay-line filter with smoothly time-varying Rayleigh-distributed tap coefficients. The receiver uses an adaptive minimum mean square error (MMSE) multiuser channel estimator based on the reduced Kalman least mean square (RK-LMS) algorithm to predict these tap coefficients (Kohli and Mehra, Wireless Personal Communication 46:507–521, 2008). We propose the design of adaptive MMSE feedforward and feedback filters by using the estimated channel response. Unlike the previously available Kalman filtering algorithm based approach (Chen and Chen, IEEE Transactions on Signal Processing 49:1523–1532, 2001), the incorporation of RK-LMS algorithm reduces the computational complexity of multiuser receiver. The computer simulation results are presented to show the substantial improvement in its bit error rate performance over the conventional LMS algorithm based receiver. It can be inferred that the proposed multiuser receiver proves to be robust against the nonstationarity introduced due to channel variations, and it is also beneficial for the multiuser interference cancellation and data detection in CDMA systems.  相似文献   

16.
In many physical channels where multiuser detection techniques are to be applied, the ambient channel noise is known through experimental measurements to be decidedly non-Gaussian, due largely to impulsive phenomena. This is due to the impulsive nature of man-made electromagnetic interference and a great deal of natural noise. This paper presents a robust multiuser detector for combating multiple access interference and impulsive noise in code division multiple access (CDMA) communication systems. A new M-estimator is proposed for "robustifying" the detector. The approach is corroborated with simulation results to evaluate the performance of the proposed robust multiuser detector compared with that of the linear decorrelating detector, and the Huber and the Hampel M-estimator based detectors. Simulation results show that the proposed detector with significant performance gain outperforms the linear decorrelating detector, and the Huber and the Hampel M-estimator based detectors. This paper also presents an improved robust blind multiuser detection technique based on a subspace approach, which requires only the signature waveform and the timing of the desired user to demodulate that user's signal. Finally, we show that the robust multiuser detection technique and its blind adaptive version can be applied to both synchronous and asynchronous CDMA channels.  相似文献   

17.
We present a large-system performance analysis of blind and group-blind multiuser detection methods. In these methods, the receivers are estimated based on the received signal samples. In particular, we assume binary random spreading, and let the spreading gain N, the number of users K, and the number of received signal samples M all go to infinity, while keeping the ratios K/N and M/N fixed. We characterize the asymptotic performance of the direct-matrix inversion (DMI) blind linear minimum mean-square error (MMSE) receiver, the subspace blind linear MMSE receiver, and the group-blind linear hybrid receiver. We first derive the asymptotic average output signal-to-interference-plus-noise ratio (SINR) for each of these receivers. Our results reveal an interesting "saturation" phenomenon: The output SINR of each of these receivers converges to a finite limit as the signal-to-noise ratio (SNR) of the desired user increases, which is in stark contrast to the fact that the output SINR achieved by the exact linear MMSE receiver can get arbitrarily large. This indicates that the capacity of a wireless system with blind or group-blind multiuser receivers is not only interference-limited, but also estimation-error limited. We then show that for both the blind and group-blind receivers, the output residual interference has an asymptotic Gaussian distribution, independent of the realizations of the spreading sequences. The Gaussianity indicates that in a large system, the bit-error rate (BER) is related to the SINR simply through the Q function  相似文献   

18.
The problem of joint multiuser detection and channel estimation in frequency-selective Rayleigh fading CDMA channels is considered. First the optimal multiuser detector for such channels is derived, which is seen to have a computational complexity exponential in the product of the number of users and the length of the transmitted data sequence. Two suboptimal detectors are then developed and analyzed, both of which employ decorrelating filters at the front-ends to eliminate the multiple-access interference and the multipath interference. The symbol-by-symbol detector uses a Kalman filter and decision feedback to track the fading channel for diversity combining. The per-survivor sequence detector is in the form of the Viterbi algorithm with the trellis updates being computed by a bank of Kalman filters in the per-survivor fashion. Both suboptimal detectors require the knowledge of all waveforms of all users in the channel and the channel fading model parameters. Adaptive versions of these suboptimal detectors that require only the knowledge of the waveform of the user of interest are then developed. The adaptive receivers employ recursive-least-squares (RLS) minimum-mean-square-error (MMSE) filters at the front-end to mitigate the interference, and use a bank of linear predictors to track the fading channels. It is shown that the front-end RLS-MMSE filters can be implemented using systolic arrays to exploit massively parallel signal processing computation, and to achieve energy efficiency. Finally, the performance of the suboptimal detectors and their adaptive versions are assessed by simulations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
We consider the problem of turbo multiuser detection for synchronous and asynchronous code-division multiple-access (CDMA) in the presence of unknown users. Turbo multiuser detectors, as previously developed, typically require knowledge of the signature waveforms of all of the users in the system and ignore users whose signature sequences are unknown, e.g., users outside the cell. We develop turbo multiuser detection for CDMA uplink systems and other environments in which the receiver has knowledge of the signature waveforms of only K˘⩽ K users. Subspace techniques are used to estimate the interference from the unknown-users and the interference estimate is subtracted from the received signal. We see that the new receiver significantly outperforms the conventional turbo multiuser receiver for moderate and high signal-to-noise ratios. It is also seen that the traditional turbo receiver provides little gain through iteration when unknown users are present  相似文献   

20.
An adaptive multiuser receiver for CDMA systems   总被引:8,自引:0,他引:8  
A new real-time, digital adaptive multiuser receiver structure is proposed for the uplink in a mobile communications system employing code division multiple access (CDMA). The receiver efficiently implements the decorrelating detector of Lupas and Verdu (1989) and can be adapted to incorporate decision feedback to further improve the detector performance. While the basic receiver design is presented for synchronous CDMA over AWGN channels, experimental evaluation of the receiver for the asynchronous case verifies its robustness for cases when the relative user delays are small compared to the symbol duration as in microcellular scenarios. An efficient decorrelating RAKE combiner for frequency-selective multipath channels is also proposed and analyzed. Performance evaluation of the detector via computer simulation scenarios is conducted in support of analytical results to substantiate its potential for real-time operation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号