首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composites containing Ce-ZrO2, Al2O3, and aligned Al2O3 platelets were produced by centrifugal consolidation and pressureless sintering, followed by heat treatments at 1600°C for varied duration. Constituents in the consolidated microstructures were either uniformly distributed throughout or segregated into gradient layers, depending critically on platelet content. Quantitative image analysis was used to examine microstructure development with heat treatment. Changes in the volume fraction, dimensional anisotropy, and gradient of pores and platelets, as well as changes in the phase gradient, were quantified. Microstructure development was strongly dependent on the initial microstructure design attained from suspension processing.  相似文献   

2.
A defect model proposed to explain the effect of titanium doping on the rate of sintering of Al2O3 is revised to fit the oxidizing conditions of the experiments. The model accounts for the observed change in sintering rate by a change from rate limitation by ions to rate limitation by electrons, but requires the presence of an unusually large concentration of acceptor impurities in the material. Models similar to the ones originally proposed account for the rate of densification of Al2O3:Zr by hot-pressing in vacuo, provided it is extended by including electronics defects.  相似文献   

3.
The sintering of a composite of MgO–B2O3–Al2O3 glass and Al2O3 filler is terminated due to the crystallization of Al4B2O9 in the glass. The densification of a composite of MgO–B2O3–Al2O3 glass and Al2O3 filler using pressureless sintering was accomplished by lowering the sintering temperature of the composite. The sintering temperature was lowered by the addition of small amounts of alkali metal oxides to the MgO–B2O3–Al2O3 glass system. The resultant composite has a four-point bending strength of 280 MPa, a coefficient of thermal expansion (RT—200°C) of 4.4 × 10−6 K−1, a dielectric constant of 6.0 at 1 MHz, porosity of approximately 1%, and moisture resistance.  相似文献   

4.
Wet milling of Al2O3-aluminide alloy (3A) precursor powders in acetone has been investigated by milling Fe/Al/Al2O3 and Fe2O3/Al/Al2O3 powder mixtures. The influence of the milling process on the physical and chemical properties of the milled powders has been studied. Particle refinement and homogenization were found not to play a dominant role, whereas plastic deformation of the metal particles leads to the formation of dislocations and a highly disarranged polycrystalline structure. Although no chemical reactions among the powder components in Fe2O3/Al/Al2O3 powder mixtures were observed, the formation of a nanocrystalline, ordered intermetallic FeAl phase in Fe/Al/Al2O3 powder mixtures caused by mechanical alloying was detected. Chemical reactions of Fe and Al particle surfaces with the atmosphere and the milling media lead to the formation of highly porous hydroxides on the particle surfaces. Hence the specific surface area of the powders increases, while the powder density decreases during milling. The fraction of Fe oxidized during milling was determined to be 0.13. The fraction of Al oxidized during milling strongly depends on the metal content of the powder mixture. It ranges between 0.4 and 0.8.  相似文献   

5.
High-purity polycrystalline MgO and Al2O3 were thermally grooved at 1500° and 1600°C. Accurate techniques were developed for following the growth of a single groove. For high-purity samples growth kinetics were essentially similar to those reported in the literature but were determined to be controlled by volume diffusion. Specimens for thermal grooving were prepared from Al2O3 to which transition metal oxides (Fe2O39, MnO, and TiO2), which are known to accelerate shrinkage and sintering of Al2O3 powder compacts, had been added; the rate of groove growth was increased remarkably by minor amounts of these additives. Control of partial pressure indicated that Fe2+ and Ti4+ are the species active in promoting groove growth. Substantial evidence was found for volume diffusion as the mechanism controlling groove formation.  相似文献   

6.
α - Al2O3 nanopowders with mean particle sizes of 10, 15, 48, and 80 nm synthesized by the doped α-Al2O3 seed polyacrylamide gel method were used to sinter bulk Al2O3 nanoceramics. The relative density of the Al2O3 nanoceramics increases with increasing compaction pressure on the green compacts and decreasing mean particle size of the starting α-Al2O3 nanopowders. The densification and fast grain growth of the Al2O3 nanoceramics occur in different temperature ranges. The Al2O3 nanoceramics with an average grain size of 70 nm and a relative density of 95% were obtained by a two-step sintering method. The densification and the suppression of the grain growth are achieved by exploiting the difference in kinetics between grain-boundary diffusion and grain-boundary migration. The densification was realized by the slower grain-boundary diffusion without promoting grain growth in second-step sintering.  相似文献   

7.
The composite sol—gel (CSG) technology has been utilized to process SiC—Al2O3 ceramic/ceramic particulate reinforced composites with a high content of SiC (up to 50 vol%). Alumina sol, resulting from hydrolysis of aluminum isopropoxide, has been utilized as a dispersant and sintering additive. Microstructures of the composites (investigated using TEM) show the sol-originating phase present at grain boundaries, in particular at triple junctions, irrespective of the type of grain (i.e., SiC or Al2O3). It is hypothesized that the alumina film originating from the alumina sol reacts with SiO2 film on the surface of SiC grains to form mullite or alumina-rich mullite-glass mixed phase. Effectively, SiC particles interconnect through this phase, facilitating formation of a dense body even at very high SiC content. Comparative sinterability studies were performed on similar SiC—Al2O3 compositions free of alumina sol. It appears that in these systems the large fraction of directly contacting SiC—SiC grains prevents full densification of the composite. The microhardness of SiC—Al2O3 sol—gel composites has been measured as a function of the content of SiC and sintering temperature. The highest microhardness of 22.9 GPa has been obtained for the composition 50 vol% SiC—50 vol% Al2O3, sintered at 1850°C.  相似文献   

8.
ZrO2–Al2O3 nanocomposite particles were synthesized by coating nano-ZrO2 particles on the surface of Al2O3 particles via the layer-by-layer (LBL) method. Polyacrylic acid (PAA) adsorption successfully modified the Al2O3 surface charge. Multilayer coating was successfully implemented, which was characterized by ξ potential, particle size. X-ray diffraction patterns showed that the content of ZrO2 in the final powders could be well controlled by the LBL method. The powders coated with three layers of nano-ZrO2 particles, which contained about 12 wt% ZrO2, were compacted by dry press and cold isostatically pressed methods. After sintering the compact at 1450°C for 2 h under atmosphere, a sintered body with a low pore microstructure was obtained. Scanning electron microscopy micrographs of the sintered body indicated that ZrO2 was well dispersed in the Al2O3 matrix.  相似文献   

9.
Alumina powders with varying iron oxide contents were prepared by coprecipitation. The powders were spheroidized by passing them through an oxygen-acetylene flame. The spheres were sized, annealed, and sintered in air and in N2 with 132 ppm O2. Isothermal studies were combined with constant-rate-of-heating studies to identify the mechanism of sintering and to calculate the diffusion coefficients. The contribution of surface diffusion during initial-stage sintering of Fe-doped Al2O3 was estimated by combining shrinkage and neck-growth data. The effect of Ti on the sintering rate of Fe-doped Al2O3 was also studied. Both Fe2+ and Ti4+ ions enhanced the sintering rate of Al2O3. A defect model for corundum is proposed to explain the sintering data for transition-metal-ion-doped Al2O3.  相似文献   

10.
Simulataneous additions of SrO and Al2O3 to ZrO2 (12 mol% CeO2) lead to the in situ formation of strontium aluminate (SrO · 6Al2O3) platelets (∼0.5 μm in width and 5 to 10 μm in length) within the Ce-TZP matrix. These platelet-containing Ce-TZP ceramics have the strength (500 to 700 MPa) and hardness (13 to 14 GPa) of Ce-TZP/Al2O3 while maintaining the high toughness (14 to 15 MPa ± m1/2) of Ce-TZP. Optimum room-temperature properties are obtained at SrO/Al2O3 molar ratios between 0.025 and 0.1 for ZrO2 (12 mol% CeO2) with starting Al2O3 contents ranging between 15 and 60 vol%. The role of various toughening mechanisms is discussed for these composite ceramics.  相似文献   

11.
Composites of β-Ce2O3·11Al2O3 and tetragonal ZrO2 were fabricated by a reductive atmosphere sintering of mixed powders of CeO2, ZrO2 (2 mol% Y2O3), and Al2O3. The composites had microstructures composed of elongated grains of β-Ce2O3·11Al2O3 in a Y-TZP matrix. The β-Ce2O3·11Al2O3 decomposed to α-Al2O3 and CeO2 by annealing at 1500°C for 1 h in oxygen. The elongated single grain of β-Ce2O3·11Al2O3 divided into several grains of α-Al2O3 and ZrO2 doped with Y2O3 and CeO2. High-temperature bending strength of the oxygen-annealed α-Al2O3 composite was comparable to the β-Ce2O3·11Al2O3 composite before annealing.  相似文献   

12.
The effect of Y2O3 content on the flexure strength of melt-grown Al2O3–ZrO2 eutectics was studied in a temperature range of 25°–1427°C. The processing conditions were carefully controlled to obtain a constant microstructure independent of Y2O3 content. The rod microstructure was made up of alternating bands of fine and coarse dispersions of irregular ZrO2 platelets oriented along the growth axis and embedded in the continuous Al2O3 matrix. The highest flexure strength at ambient temperature was found in the material with 3 mol% Y2O3 in relation to ZrO2(Y2O3). Higher Y2O3 content did not substantially modify the mechanical response; however, materials with 0.5 mol% presented a significant degradation in the flexure strength because of the presence of large defects. They were nucleated at the Al2O3–ZrO2 interface during the martensitic transformation of ZrO2 on cooling and propagated into the Al2O3 matrix driven by the tensile residual stresses generated by the transformation. The material with 3 mol% Y2O3 retained 80% of the flexure strength at 1427°C, whereas the mechanical properties of the eutectic with 0.5 mol% Y2O3 dropped rapidly with temperature as a result of extensive microcracking.  相似文献   

13.
Solubility of NiO in Al2O3 was determined by electron probe microanalysisy A diffusion couple method was used by coupling an NiO-doped Al2O3 polycrystal to a pure single crystal of Al2O3. The solubility of NiO in Al2O3 in air was 230 wt ppm (157 at. ppm of cations) and 170 wt ppm (116 at. ppm) at 2073 and 1973 K, respectively. The solubility of NiO in Al2O3 obtained in this work was compared with our previous work of the solubility of MgO in Al2o3.  相似文献   

14.
A method is proposed to prepare Al2O3-AlN-Ni composites. The composites are prepared by sintering Al2O3/NiAl powder mixtures at 1600°C in a mixture of nitrogen and carbon monoxide. The presence of NiAl particles raises the green density of Al2O3/NiAl powder compacts. During sintering, NiAl reacts with nitrogen to form AlN and Ni inclusions. A volume expansion accompanies the reaction. Because of the high green density and the reaction, the volume shrinkage of the Al2O3-AlN-Ni composite decreases with the increase of added NiAl content.  相似文献   

15.
SiO2, Al2O3, and 3Al2O3.2SiO2 powders were synthesized by combustion of SiCl4 or/and AlCl3 using a counterflow diffusion flame. The SiO2 and Al2O3 powders produced under various operation conditions were all amorphous and the particles were in the form of agglomerates of small particles (mostly 20 to 30 nm in diameter). The 3Al2O3.2SiO2 powder produced with a low-temperature flame was also amorphous and had a similar morphology. However, those produced with high-temperature flames had poorly crystallized mullite and spinel structure, and the particles, in addition to agglomerates of small particles (20 to 30 nm in diameter), contained larger, spherical particles 150 to 130 nm in diameter). Laser light scattering and extinction measurements of the particle size and number density distributions in the flame suggested that rapid fusion leading to the formation of the larger, spherical particles occurred in a specific region of the flame.  相似文献   

16.
Porous Al2O3/20 vol% LaPO4 and Al2O3/20 vol% CePO4 composites with very narrow pore-size distribution at around 200 nm have been successfully synthesized by reactive sintering at 1100°C for 2 h from RE2(CO3)3· x H2O (RE = La or Ce), Al(H2PO4)3 and Al2O3 with LiF additive. Similar to the previously reported UPC-3Ds (uniformly porous composites with a three-dimensional network structure, e.g. CaZrO3/MgO system), decomposed gases in the starting materials formed a homogeneous open porous structure with a porosity of ∼40%. X-ray diffraction, 31P magic-angle spinning nuclear magnetic resonance, scanning electron microscopy, and mercury porosimetry revealed the structure of the porous composites.  相似文献   

17.
The compositional range for glass formation below 1600°C in the Sm2O3─Al2O3─SiO2 system is (9–25)Sm2O3─(10–35)Al2O3─(40–75)SiO2 (mol%). Selected properties of the Sm2O3─Al2O3─SiO2 (SmAS) glasses were evaluated as a function of composition. The density, refractive index, microhardness, and thermal expansion coefficient increased as the Sm2O3 content increased from 9 to 25 mol%, the values exceeding those for fused silica. The dissolution rate in 1 N HCl and in deionized water increased with increasing Sm2O3 content and with increasing temperature to 70°C. The transformation temperature ( T g ) and dilatometric softening temperature ( T d ) of the SmAS glasses exceeded 800° and 850°C, respectively.  相似文献   

18.
Different Fe-Al2O3 and FeAl-Al2O3 composites with metallic contents up to 30 vol% have been fabricated via reaction processing of Al2O3, Fe, and Al mixtures. Low Al contents (<∼10 vol%) within the starting mixture lead to composites consisting of Fe embedded in an Al2O3 matrix, whereas aluminide-containing Al2O3 composites result from powder mixtures with higher Al contents. In both cases, densification up to 98% TD can be achieved by pressureless sintering in inert atmosphere at moderate temperatures (1450°-1500°C). The proposed reaction sintering mechanism includes the reduction of native oxide layers on the surface of the Fe particles by Al and, in the case of mixtures with high Al contents, aluminide formation followed by sintering of the composites. Density and bending strengths of the reaction-sintered composites depend strongly on the Al content of the starting mixture. In the case of samples containing elemental Fe, crack path observations indicate the potential for an increase of fracture toughness, even at room temperature, by crack bridging of the ductile Fe inclusions.  相似文献   

19.
Paste samples of tricalcium aluminate alone, with CaCl2, with gypsum, and with gypsum and CaCl2 were hydrated for up to 6 months and the hydration products characterized by SEM, XRD, and DTA. Tricalcium aluminate hydrated initially to a hexagonal hydroaluminate phase which then changed to the cubic form; the transformation rate depended on the size and shape of the sample and on temperature. The addition of CaCl2 to tricalcium aluminate resulted in the formation of 3CaO · Al2O3· CaCl2·10H2O and 4CaO · Al2O3· 13H2O, or a solid solution of the two. The chloride retarded the formation of the cubic phase 3CaO · Al2O3· 6H2O; the addition of gypsum resulted in the formation of monosulfoaluminate with a minor amount of ettringite. When chloride was added to tricalcium aluminate and gypsum, more ettringite was formed, although 3CaO · Al2O3· CaSO4· 12H2O and 3CaO · Al2O3· CaCl2· 10H2O were the main hydration products.  相似文献   

20.
High-frequency induction heat sintering (HFIHS) is a comparatively new technique that consolidates metals and ceramics very rapidly to full density. In this work, superfast densification behavior and the attendant microstructural features of Al2O3–(ZrO2+8% mol Y2O3) composites processed by HFIHS were investigated. The effects of processing parameters such as sintering temperatures, pressures, and heating rate, on the mechanical and microstructural properties were studied. The results indicated that HFIHS was effective in the preparation of fine-grained, nearly fully dense Al2O3–8YSZ ceramics from the powder with a smaller particle size by optimizing the overall processing parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号