首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Condensation heat transfer coefficients (HTCs) of HCFC22, HCFC123, HFC134a and HFC245fa are measured on a horizontal plain tube 19.0 mm outside diameter. All data are taken at the vapor temperature of 39°C with a wall subcooling temperature of 3–8°C. Test results show the HTCs of newly developed alternative low vapor pressure refrigerant, HFC245fa, on a smooth tube are 9.5% higher than those of HCFC123, while they are 3.3% and 5.6% lower than those of HFC134a and HCFC22, respectively. Nusselt’s prediction equation for a smooth tube underpredicts the measured data by 13.7% for all refrigerants, while a modified equation yielded 5.9% deviation against all measured data. From the view point of environmental safety and condensation heat transfer, HFC245fa is a long-term good candidate to replace HCFC123 used in centrifugal chillers.  相似文献   

2.
An experimental study of boiling heat transfer with refrigerants R-410A and R-407C is presented. The present paper is focused on pressure drop and boiling heat transfer coefficient of the refrigerants inside a horizontal smooth minichannel. To evaluate the diameter size effect on pressure and heat transfer characteristics, minichannels with inner diameters of 1.5 mm and 3.0 mm and with lengths of 1500 mm and 3000 mm respectively are used. The pressure drop increases with mass flux and heat flux for both inner tube diameters and for both the refrigerants. The pressure drop of R-407C is higher than that of R-410A, but the heat transfer coefficient of R-410A is higher than of R-407C at the low quality region. The heat transfer coefficient in the tube with an inner diameter of 1.5 mm is higher than that of 3.0 mm diameter tube at the low quality region. The comparison of present heat transfer coefficient with the predictions of some previous correlations shows a large deviation. Therefore, there is a necessity to develop a new correlation.  相似文献   

3.
This paper reports an experimental study on flow boiling of pure refrigerants R134a and R123 and their mixtures in a uniformly heated horizontal tube. The flow pattern was observed through tubular sight glasses with an internal diameter of 10 mm located at the inlet and outlet of the test section. Tests were run at a pressure of 0.6 MPa in the heat flux ranges of 5–50 kW/m2, vapor quality 0–100 percent and mass velocity of 150–600 kg/m2s. Both in the nucleate boiling-dominant region at low quality and in the two-phase convective evaporation region at higher quality where nucleation is supposed to be fully suppressed, the heat transfer coefficient for the mixture was lower than that for an equivalent pure component with the same physical properties as the mixture. The reduction of the heat transfer coefficient in mixture is explained by such mechanisms as mass transfer resistance and non-linear variation in physical properties etc. In this study, the contribution of convective evaporation, which is obtained for pure refrigerants under the suppression of nucleate boiling, is multiplied by the composition factor by Singal et al. (1984). On the basis of Chen’s superposition model, a new correlation is presented for heat transfer coefficients of mixture.  相似文献   

4.
R22三种替代物R134a、R410a和R407c在空调系统中性能对比研究   总被引:9,自引:0,他引:9  
谷波  李文华 《流体机械》1999,27(10):41-42
对R22 的三种替代物R134a 、R410a 和R407c 在空调系统中的性能及费用进行了分析对比,结果表明R410a 是一种较佳的替代选择。  相似文献   

5.
In this study, external condensation heat transfer coefficients (HTCs) of six flammable refrigerants of propylene (R1270), propane (R290), isobutane (R600a), butane (R600), dimethylether (RE170), and HFC32 were measured at the vapor temperature of 39°C on a 1023 fpm low fin and Turbo-C tubes. All data were taken under the heat flux of 32- 116 and 42-142 kW/m2 for the Iow fin and Turbo-C tubes respectively. Flammable refrigerants’ data obtained on enhanced tubes showed a typical trend that external condensation HTCs decrease with increasing wall subcooling. HFC32 and DME showed up to 30% higher HTCs than those of HCFC22 due to their excellent thermophysical properties. Propylene, propane, isobutane, and butane showed similar or lower HTCs than those of HCFC22. Beatty and Katz’ correlation predicted the HTCs of the flammable refrigerants obtained on a low fin tube within a mean deviation of 7.3%. Turbo-C tube showed the best performance due to its 3 dimensional surface geometry for fast removal of condensate.  相似文献   

6.
环保制冷剂R410A和R407C的性能比较   总被引:4,自引:1,他引:4  
陈九法  杨辰 《流体机械》2005,33(7):78-81
用于取代对臭氧层有破坏作用的制冷剂R22,国际上普遍认同的两种环保制冷剂为:410A和R407C。本文将分析R410A和R407C的特性,比较两者在传热性能、性能系数和蒸汽压力等方面的特征差异,为确定替代制冷剂的最佳选择提供技术支持。  相似文献   

7.
This work presents an experimental comparison of exergy efficiency (EE), irreversibility at the process 1–2 (evaporator exit to compressor inlet), 2–3 (compressor inlet to condenser inlet), 3–4 (condenser inlet to expansion valve inlet), 4–5 (expansion valve inlet to evaporator inlet) and 5–1 (evaporator), and coefficient of performance (COP) of R22, and its substitutes R134a, R290 and R407C in vapor compression refrigeration system (VCRS) of an air conditioner. In addition, the effects of air temperature in the freezer with reference to environment states on irreversibility and EE have been investigated. At ?18°C air temperature in the freezer, 33°C reference environment state and 42% relative humidity refrigerants R22 and its substitutes R134a, R290 and R407C VCRSs the total irreversibilities are 665.7, 753.5, 582.1 and 677 W, and EEs are 22.9, 14.2, 26.5 and 20.6%, respectively. The refrigerant R290 is the best performer among candidate refrigerants but it suffers from flammability. Thus, R407C can considerably be used to replace R22.  相似文献   

8.
对非共沸制冷剂R410A在一根水平光管和2根25.4 mm水平双侧强化管管外冷凝换热特性进行研究.分别研究在变入口水温和变水流量的条件下,制冷剂的管外冷凝换热特性.利用Wilson图解法和Wilson-Gnielinski法计算管外冷凝换热系数,并分析两种处理方法所得到的管外冷凝换热系数的差异,最后根据Nusselt管...  相似文献   

9.
水平微圆管内R22和R410a凝结换热试验   总被引:1,自引:0,他引:1  
R410a是被广泛看好的一种R22替代物,研究R410a的凝结换热特性对于开发适用此类制冷工质的凝结换热设备具有重要意义.搭建了微细尺度凝结换热试验台,测量了饱和温度为40 ℃、质量流速为200~1 000 kg/ (m2·s)、干度为0.2~0.8条件下R22和R410a在内径为0.941 mm不锈钢圆管内的凝结换热系数,分析了质量流速和干度对凝结换热的影响,并把试验数据与被广泛应用于传统大管道的SHAH(1979)和AKERS(1959)关联式进行了对比.试验与分析结果表明,凝结换热系数随着质量流速和干度的增大而增大,在高干度区更加明显,表明在高干度区切应力的作用增强;两个关联式均不能准确预测试验数据,最大偏差超过60%;与R22相比,R410a的凝结换热系数在较低质量流速时低于R22,在中高质量流速时与R22相当.  相似文献   

10.
R407C、R410A制冷系统相关特性研究进展   总被引:4,自引:2,他引:4  
陈斌  陈光明 《流体机械》2003,31(2):42-45
系统介绍了国外学者对R22制冷剂最有希望的替代物R407C和R410A的有关特性包括分馏特性、节流特性、干燥特性、电气特性及其与润滑相容特性等研究成果。  相似文献   

11.
12.
为了研究单管管内蒸发性能,搭建了管内蒸发性能实验台,用隔膜泵代替了传统压缩机作为系统动力。研究了在冷却水量0.6m3/h,0.8m3/h和1.0m3/h下,9.52mm内螺纹管内10℃蒸发的制冷剂侧换热性能。结果表明,R22和R41OA的总换热系数,换热系数hr和压降均随着制冷剂流量的增加而增加,在小质量流量下,R410A比R22有更好的换热性能,看起来可以替代R22。但当制冷剂流速增大到300~400kg/(s.m2)时,R22的换热系数增加显著,而R410A趋于平缓,所以在大质量流量下,R410A没有R22换热性能好,替代工作仍待研究。  相似文献   

13.
Journal of Mechanical Science and Technology - A comparative heat transfer performance of an internally grooved anodized thermosyphon with eco-friendly refrigerants is presented in this study....  相似文献   

14.
总结了R22、R410A以及R32的大量文献并分别比较了三者的循环性能,其中针对在我国广泛推广的R32制冷剂所面临的排气温度过高的问题做了综述,并由此搭建了以R32做制冷剂的变频滚动转子式水冷机组实验台,利用AHRI标准空调工况设计试验,旨在降低压缩机排气温度的同时,亦到达系统高性能系数。研究结果表明:(1)相比于R410A制冷剂,在我国成本更低、系统循环性能更优的R32将作为R22的长期替代制冷剂来进行更加广泛而深入的研究。(2)AHRI标准空调工况下,R32的COP变化速率最佳,排气温度最高,且R410A与R22分别只占R32排气温度的36.3%与55%,但可通过不增加成本的湿压缩方法大幅降低R32的排气温度。(3)本文所建立的R32转子式制冷系统实验台可通过控制压缩机吸气口干度的方式来解决压缩机排气温度过高的问题,同时通过大量试验数据能够得出最佳吸气带液量以优化系统性能。  相似文献   

15.
在焓差法空调器性能测试平台上,对空气源热泵热水器分别用R134 a、R417 a和R22进行各种典型工况下的试验,对3种制冷工质的吸排气压力、吸排气温度、压缩机输入功率、制热量、性能系数进行对比分析,分析验证了各参数随环境工况变化的关系,得出了在不同工况下的各特性参数的变化规律,为热泵热水器的设计及工质选用提供了参考。  相似文献   

16.
申广玉 《流体机械》2007,35(6):83-85
通过理论计算得出了相同换热量和相同工况下,采用5/16″管径R410A蒸发器(或冷凝器)与采用3/8″管径R22蒸发器(或冷凝器)时回路数的比值,并指出比值是两工质物性差异和盘管的内径及当量摩擦阻力系数差异共同作用的结果.  相似文献   

17.
于红霞 《机电信息》2012,(34):60-62
通过换热管测试台对A、B2种双侧强化蒸发管的换热性能进行了测试研究。研究结果显示:对于同一管型而言,在工况不变的情况下,管内流速在1.0-2.0m/s时,换热管的综合换热系数会随着管内水流速的增加而呈上升趋势:两者的综合换热系数与其外齿周向齿数和轴向齿数有很大关系,外内齿数多综合换热系数高:新开发的高效换热蒸发管-B比原仃的蒸发管-A换热性能高6.6%。通过采用新开发的高效蒸发管-B每年可为公司节省成本约256.6余万元。  相似文献   

18.
The heat transfer characteristics of R134a during downward condensation are investigated experimentally and numerically. While the convective heat transfer coefficient, two-phase multiplier and frictional pressure drop are considered to be the significant variables as output for the analysis, inputs of the computational numerical techniques include the important two-phase flow parameters such as equivalent Reynolds number, Prandtl number, Bond number, Froude number, Lockhart and Martinelli number. Genetic algorithm technique (GA), unconstrained nonlinear minimization algorithm-Nelder-Mead method (NM) and non-linear least squares error method (NLS) are applied for the optimization of these significant variables in this study. Regression analysis gave convincing correlations on the prediction of condensation heat transfer characteristics using ±30% deviation band for practical applications. The most suitable coefficients of the proposed correlations are depicted to be compatible with the large number of experimental data by means of the computational numerical methods. Validation process of the proposed correlations is accomplished by means of the comparison between the various correlations reported in the literature.  相似文献   

19.
Journal of Mechanical Science and Technology - R22 and R407C mass flow rates through straight and coiled adiabatic capillary tubes are analyzed with three ANN models, i.e., the feed forward network...  相似文献   

20.
Forced convective boiling heat transfer coefficients were predicted for an annular flow inside a horizontal tube for pure refrigerants and nonazeotropic binary refrigerant mixtures. The heat transfer coefficients were calculated based on the turbulent temperature profile in liquid film and vapor core considering the composition difference in vapor and liquid phases, and the nonlinearity in mixing rules for the calculation of mixture properties. The heat transfer coefficients of pure refrigerants were estimated within a standard deviation of 14% compared with available experimental data. For nonazeotropic binary refrigerant mixtures, prediction of the heat transfer coefficients was made with a standard deviation of 18%. The heat transfer coefficients of refrigerant mixtures were lower than linearly interpolated values calculated from the heat transfer coefficients of pure refrigerants. This degradation was represented by several factors such as the difference between the liquid and the overall compositions, the conductivity ratio and the viscosity ratio of both components in refrigerant mixtures. The temperature change due to the concentration gradient was a major factor for the heat transfer degradation and the mass flux itself at the interface had a minor effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号