首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An important mammalian defence strategy against intracellular pathogens is the presentation of cytoplasmically derived short peptides by major histocompatibility complex (MHC) class I molecules to cytotoxic T lymphocytes. MHC class I molecules assemble in the endoplasmic reticulum (ER) with chaperones, including calnexin and calreticulin, before binding to the transporter associated with antigen processing (TAP). We show here that the thiol-dependent reductase ERp57 (also known as ER60 protease) is involved in MHC class I assembly. ERp57 co-purified with the rat TAP complex (comprising TAP1 and TAP2), and associated with MHC class I molecules at an early stage in their biosynthesis. This association was sensitive to castanospermine, which inhibits the processing of glycoproteins. Human MHC class I molecules were also found to associate with ERp57. We conclude that ERp57 is a newly identified component of the MHC class I pathway, and that it appears to interact with MHC class I molecules before they associate with TAP.  相似文献   

2.
Cells were treated with two proteolytic inhibitors, N-acetyl-leucyl-leucyl-norleucinal and lactacystin, the latter reported to be a specific inhibitor for the proteasome. Both inhibitors retarded the maturation of endo-H-resistant forms of murine and human class I molecules from their endo-H-sensitive precursors in cell lines with functional TAP proteins. HLA-A2 maturation readily occurs in TAP-deficient T2 cells, and it has been shown that the peptides associated with A2 are derived from the leader segment of proteins in the secretory pathway. This maturation is inhibited by N-acetyl-leucyl-leucyl-norleucinal but not lactacystin, indicating that the proteasome is not required for the generation of HLA-A2 binding peptides in these cells. The murine class Ib molecule Qa-1b presents a leader peptide derived from D-end class I molecules to alloreactive CTL. Since this presentation is dependent on the expression of TAP proteins, we determined if this requirement reflects a need for the proteasome to process this peptide. We found that lactacystin did not inhibit the maturation of endo-H-resistant forms of Qa-1b that are dependent on this leader peptide for its maturation, nor did it inhibit the expression of this peptide-Qa-1b complex in a functional assay. Thus, unlike conventional cytosolic peptides, leader peptides (regardless of whether they are dependent on TAP for their presentation) do not require the proteasome for processing.  相似文献   

3.
Presentation of antigen-derived peptides by major histocompatibility complex (MHC) class I molecules is dependent on an endoplasmic reticulum (ER) resident glycoprotein, tapasin, which mediates their interaction with the transporter associated with antigen processing (TAP). Independently of TAP, tapasin was required for the presentation of peptides targeted to the ER by signal sequences in MHC class I-transfected insect cells. Tapasin increased MHC class I peptide loading by retaining empty but not peptide-containing MHC class I molecules in the ER. Upon co-expression of TAP, this retention/release function of tapasin was sufficient to reconstitute MHC class I antigen presentation in insect cells, thus defining the minimal non-housekeeping functions required for MHC class I antigen presentation.  相似文献   

4.
TAP1-independent loading of class I molecules by exogenous viral proteins   总被引:1,自引:0,他引:1  
Presentation of peptides derived from endogenous proteins on class I molecules needs functional TAP peptide transporters. To reveal whether class I-associated presentation of exogenous proteins also required the presence of TAP transporters, we assessed in vitro the ability of spleen cells and macrophages from TAP1-deficient mice (TAP1-/-) to present peptides derived from exogenous recombinant viral proteins on their class I molecules. We found that recombinant glyco- and nucleoprotein from lymphocytic choriomeningitis virus and nucleoprotein of vesicular stomatitis virus were presented as efficiently by TAP1-/- cells as by control cells. Peptide regurgitation was not involved. Since particulate, non-replicating antigens can efficiently prime anti-viral cytotoxic T cells in vivo, this new, TAP-independent pathway of class I-associated antigen presentation may be applicable for vaccine strategies.  相似文献   

5.
TAP can efficiently transport peptides up to twice as long as those bound to MHC class I molecules, suggesting a role for endoplasmic reticulum (ER) proteases in the trimming of TAP-transported peptides. To better define ER processing of antigenic peptides, we examined the capacity of TAP-deficient cells to present determinants derived from ER-targeted proteins encoded by recombinant vaccinia viruses. TAP-deficient cells failed to present antigenic peptides from internal locations in secreted proteins to MHC class I-restricted T lymphocytes. The same peptides were liberated from the C termini of a secreted protein and the lumenal domains of two membrane proteins delivered to the ER via different routes. These findings suggest that proteases in the secretory compartment can liberate C-terminal antigenic peptides from virtually any context. We propose that this activity often participates in the removal of N-terminal extensions from TAP-transported peptides, thereby creating optimally sized products for MHC class I binding. We further demonstrate that ER trimming of C termini can occur if we express an appropriate carboxypeptidase in the secretory pathway. The absence of such trimming under normal circumstances suggests that carboxypeptidase activity is generally deficient in the ER, consistent with the concordance between the specificity of TAP and MHC class I molecules for the same types of C-terminal residues.  相似文献   

6.
Tapasin is a resident ER protein believed to be critical for antigen presentation by HLA class I molecules. We demonstrate that allelic variation in MHC class I molecules influences their dependence on tapasin for peptide loading and antigen presentation. HLA-B*2705 molecules achieve high levels of surface expression and present specific viral peptides in the absence of tapasin. In contrast, HLA-B*4402 molecules are highly dependent upon human tapasin for these functions, while HLA-B8 molecules are intermediate in this regard. Significantly, HLA-B*2705 like HLA-B*4402, requires tapasin to associate efficiently with TAP (transporters associated with antigen processing). The unusual ability of HLA-B*2705 to form peptide complexes without associating with TAP or tapasin confers flexibility in the repertoire of peptides presented by this molecule. We speculate that these properties might contribute to the role of HLA-B27 in conferring susceptibility to inflammatory spondyloarthropathies.  相似文献   

7.
8.
The presentation of viral antigens on MHC class I molecules requires their intracellular fragmentation into peptides of appropriate length and anchor residue positions. Evidence has accumulated that the proteasome is the endoprotease in charge of the generation of MHC class I ligands in the cytoplasm. The generation of T cell epitopes derived from the leader peptides of endoplasmic reticulum (ER) targeted proteins, however. has been reported to be independent of the proteasome. Here we show that the H-2Db restricted antigen presentation of the immunodominant T cell epitope derived from the ER leader of the glycoprotein of lymphocytic choriomeningitis virus (LCMV) is completely abolished by administration of the proteasome inhibitor lactacystin. Thus our data support the role of the proteasome in class I restricted antigen processing and extend it to an ER leader derived epitope from a viral glycoprotein.  相似文献   

9.
We have used the functionally distinct TAP alleles of the rat in cellular transfectants as tools to investigate how newly formed rat class I (RT1.A) molecules with distinct peptide requirements gain access to suitable peptides in the endoplasmic reticulum (ER). Normal maturation of RT1.Aa depends on the presence in the ER of peptides with C-terminal arginine, while restrictive TAP-B allelic group transporters fail to transport such peptides. In this situation, RT1.Aa is retained in the ER. We show that this retention is accompanied by accumulation of RT1.Aa in the ER, partly associated with TAP and partly free. In such cells, access to TAP of a second allelic product, RT1.Au, which does not require C-terminal arginine peptides, is competitively inhibited by the build-up of RT1.Aa. Nevertheless, RT1.Au loads and matures normally. Introduction of a permissive TAP-A allele competent to transport C-terminal arginine peptides releases RT1.Aa from the ER and restores RT1.Au interaction with TAP. Both class I alleles associate indiscriminately with permissive and restrictive TAP alleles. The data support the view that interaction with TAP is not a prerequisite for peptide loading by class I molecules, so long as suitable peptides are available in the ER. They further show that TAP association of a class I molecule depends on a competitive balance in the ER defined by the extent to which the peptide requirements of other class I molecules present are satisfied and not only by the intrinsic strength of the interaction with TAP.  相似文献   

10.
Presentation of MHC class I antigens by professional antigen-presenting cells (APC) is an important pathway in priming cytotoxic T lymphocyte responses in vivo. This study sought to identify the nature of the professional APC responsible for indirect class I presentation by examining a special feature of professional APC, namely their ability to process exogenous forms of antigen for class I presentation. Incubation of highly purified bone marrow-derived precursor cells with chicken ovalbumin (OVA) led to the efficient presentation of the major class I-restricted OVA determinant by mature dendritic cells (DC), but not by macrophages (Mphi) derived from the precursor population. DC as well as macrophages were, however, able to mediate class II presentation of OVA, suggesting that macrophages were deficient in class I processing but not in capturing exogenous OVA. The majority of mature DC, i.e. over 80 %, generated from the precursor cells pulsed with OVA, presented the class I OVA epitope. Upon maturation, class I presentation of OVA by DC was greatly reduced, suggesting that class I processing of exogenous antigen is modulated during DC maturation in a manner similar to class II antigen processing. This study shows that bone marrow-derived DC/ME progenitors capture exogenous antigen for class I presentation, and that cells of the DC lineage can be functionally distinguished from cells of the macrophage lineage based on their ability to process exogenous antigen for class I presentation.  相似文献   

11.
Efficiency of presentation of a peptide epitope by a MHC class I molecule depends on two parameters: its binding to the MHC molecule and its generation by intracellular Ag processing. In contrast to the former parameter, the mechanisms underlying peptide selection in Ag processing are poorly understood. Peptide translocation by the TAP transporter is required for presentation of most epitopes and may modulate peptide supply to MHC class I molecules. To study the role of human TAP for peptide presentation by individual HLA class I molecules, we generated artificial neural networks capable of predicting the affinity of TAP for random sequence 9-mer peptides. Using neural network-based predictions of TAP affinity, we found that peptides eluted from three different HLA class I molecules had higher TAP affinities than control peptides with equal binding affinities for the same HLA class I molecules, suggesting that human TAP may contribute to epitope selection. In simulated TAP binding experiments with 408 HLA class I binding peptides, HLA class I molecules differed significantly with respect to TAP affinities of their ligands. As a result, some class I molecules, especially HLA-B27, may be particularly efficient in presentation of cytosolic peptides with low concentrations, while most class I molecules may predominantly present abundant cytosolic peptides.  相似文献   

12.
Intracellular antigens are continually presented to cytotoxic T lymphocytes by major histocompatibility complex (MHC) class I molecules, which consist of a polymorphic 43 kDa heavy chain and a 12 kDa soluble subunit beta 2-microglobulin (beta 2m), and which bind an 8-10 amino-acid antigenic peptide. The assembly of this trimolecular complex takes place in the lumen of the endoplasmic reticulum (ER) and almost certainly requires cofactors. Most MHC class I molecules in the ER that have not yet acquired peptide are simultaneously bound to the transporter associated with antigen processing (TAP), to the 48 kDa glycoprotein tapasin and to the lectin-like chaperone calreticulin, in a multicomponent 'loading complex'. Previous studies have shown that a mutant MHC class I molecule T134K (in which Thr134 was changed to Lys) fails to bind to TAP. Here, we show that this point mutation also disrupted, directly or indirectly, the interaction between MHC class I molecules and calreticulin. T134K molecules did not present viral antigens to T cells even though they bound peptide and beta 2m normally in vitro. They exited the ER rapidly as 'empty' MHC class I complexes, unlike empty wild-type molecules which are retained in the ER and degraded. We show here that, paradoxically, the rapid exit of empty T134K molecules from the ER was dependent on a TAP-derived supply of peptides. This implies that MHC class I assembly is a two-stage process: initial binding of suboptimal peptides is followed by peptide optimisation that depends on temporary ER retention.  相似文献   

13.
The influence of the TAP complex on T-cell allorecognition of MHC class II molecules was examined using human B-cell lines that have mutations in the TAP 1 or 2 genes. The TAP mutations led to the loss of allorecognition for two of 28 anti- HLA-DR T-cell clones. Restoration of TAP expression by transfection of a TAP 2 cDNA clone led to recovery of the alloresponse for both clones. These results could be explained in two ways. First, TAP dependence could reflect specificity for a peptide derived from an MHC class I molecule that is less efficiently generated by the endocytic pathway in the TAP-deficient stimulator cells owing to reduction in surface class I expression. The proliferative responses of these clones to the TAP-deficient stimulator cells was not restored by rescue of cell-surface expression of class I molecules by low temperature culture or by the addition of class I-binding peptides. These data therefore favor the alternative explanation that class II loading by some peptides is TAP dependent. Circumstances that lead to the amplification of this minority pathway of endogenous presentation by class II MHC molecules may have the potential to interrupt self-tolerance.  相似文献   

14.
15.
Dendritic cells (DCs) express several receptors for the Fc portion of immunoglobulin (Ig)G (FcgammaR), which mediate internalization of antigen-IgG complexes (immune complexes, ICs) and promote efficient major histocompatibility complex (MHC) class II-restricted antigen presentation. We now show that FcgammaRs have two additional specific attributes in murine DCs: the induction of DC maturation and the promotion of efficient MHC class I-restricted presentation of peptides from exogenous, IgG-complexed antigens. Both FcgammaR functions require the FcgammaR-associated gamma chain. FcgammaR-mediated MHC class I-restricted antigen presentation is extremely sensitive and specific to immature DCs. It requires proteasomal degradation and is dependent on functional peptide transporter associated with antigen processing, TAP1-TAP2. By promoting DC maturation and presentation on both MHC class I and II molecules, ICs should efficiently sensitize DCs for priming of both CD4(+) helper and CD8(+) cytotoxic T lymphocytes in vivo.  相似文献   

16.
Tapasin is a 48-kDa endoplasmic reticulum (ER)-resident glycoprotein that binds to the transporter associated with antigen processing (TAP) and mediates an interaction between TAP and newly synthesized MHC class I molecules. It is also essential for the proper antigen presenting function of HLA-A*0101 (HLA-A1), HLA-A*0801 (HLA-B8) and HLA-B*4402 (HLA-B4402). We show here that while tapasin is required for HLA-A*0201 (HLA-A2) molecules to bind to TAP, its absence does not block the presentation of HLA-A2-restricted TAP-dependent epitopes to cytotoxic T lymphocytes indicating that, unlike HLA-A1, HLA-B8 and HLA-B4402, HLA-A2 has access to the TAP-dependent peptide pool even in the absence of tapasin. Nevertheless, the overall efficiency with which HLA-A2 was loaded with optimal, stabilizing peptides was impaired in the cell line .220, resulting in a significant increase in the fraction of HLA-A2 molecules being released from the ER in a "peptide-receptive" state.  相似文献   

17.
Class I MHC (MHC-I) molecules present primarily endogenous antigens, i.e. antigens that are present in the cytosol and are subject to the cytosolic processing mechanisms that comprise the conventional MHC-I processing pathway. However, exogenous antigens can also be present by MHC-I molecules in certain circumstances, particularly in the case of particulate antigens. Recently, considerable attention has been focused on mechanisms that may contribute to alternate MHC-I processing pathways. Divergent results in several different systems have suggested that more than one alternate processing mechanism may exist. After phagocytic or endocytic uptake, some exogenous antigens can escape the vacuolar system and penetrate into the cytosol, accessing the conventional MHC-I antigen processing mechanisms. In other cases, MHC-I molecules present antigens that have no clear ability to actively escape the vacuolar system. Some results indicate that certain alternate processing mechanisms are quite distinct from the conventional MHC-I pathway and are not dependent on compartments, protein, or mechanisms that are necessary for the conventional pathway, including the endoplasmic reticulum, the transporter for antigen presentation (TAP) and proteasomes. In vivo, alternate MHC-I processing mechanisms may be expressed primarily by phagocytic antigen presenting cells, i.e., macrophages, and perhaps dendritic cells, although other cell types may contribute in certain circumstances. These mechanisms may play important roles in generating CD8 T cell responses, especially to antigens expressed by vacuolar microorganisms. In addition, they provide a potential avenue for therapeutic immunization to achieve protective CD8 T cell responses with nonviable vaccine preparations, in the absence of the endogenous antigen synthesis that is provided by live viral vaccine preparations.  相似文献   

18.
Presentation of antigenic peptides by major histocompatibility complex (MHC) class I molecules depends on translocation of cytosolic peptides into the endoplasmic reticulum (ER) by transporters associated with antigen processing (TAP). Peptide transport by TAP is thought to include at least two steps: initial binding of peptide to TAP, and its subsequent translocation requiring ATP hydrolysis. These events can be monitored in peptide binding and transport assays. Previous studies have shown that the efficiency of peptide transport by human, mouse and rat transporters varies according to the C-terminals of peptide substrates in an allele and species-specific manner. However, it has not been clear during which step of peptide interaction with TAP selection occurs. We used an assay monitoring the peptide binding step to study the binding affinity of a library of 199 peptides for human TAP and the two major allelic rat TAP complexes. We observed a dominant influence of the C-terminus on peptide binding affinity for all transporters, and highly restrictive selection of peptides with aliphatic and aromatic C-terminals by rat TAP1/TAP2u complexes. The selectivity of peptide binding to rat TAP complexes is in full accordance with published data on selective peptide transport and on control of antigen presentation by rat TAP. These results strongly suggest that (i) peptide selection by TAP occurs exclusively in the initial binding step; (ii) all factors involved in peptide selection by TAP are present in insect cells.  相似文献   

19.
A CD8(+) cytolytic T-lymphocyte (CTL) response to antigen-presenting cells generally requires intracellular delivery or synthesis of antigens in order to access the major histocompatibility complex (MHC) class I processing and presentation pathway. To test the ability of pertussis toxin (PT) to deliver peptides to the class I pathway for CTL recognition, we constructed fusions of CTL epitope peptides with a genetically detoxified derivative of PT (PT9K/129G). Two sites on the A (S1) subunit of PT9K/129G tolerated the insertion of peptides, allowing efficient assembly and secretion of the holotoxin fusion by Bordetella pertussis. Target cells incubated with these fusion proteins were specifically lysed by CTLs in vitro, and this activity was shown to be MHC class I restricted. The activity was inhibited by brefeldin A, suggesting a dependence on intracellular trafficking events, but was not inhibited by the proteasome inhibitors lactacystin and N-acetyl-L-leucyl-L-leucyl-L-norleucinal (LLnL). Furthermore, the activity was present in mutant antigen-presenting cells lacking the transporter associated with antigen processing, which transports peptides from the cytosol to the endoplasmic reticulum for association with MHC class I molecules. PT may therefore bypass the proteasome-dependent cytosolic pathway for antigen presentation and deliver epitopes to class I molecules via an alternative route.  相似文献   

20.
Here, we show that bacteria induce de novo synthesis of both major histocompatability complex (MHC) class I and II molecules in a mouse dendritic cell culture system. The neo-biosynthesis of MHC class I molecules is delayed as compared with that of MHC class II. Furthermore, bacteria stabilize MHC class I molecules by a 3-fold increase of their half-life. This has important consequences for the capacity of dendritic cells to present bacterial antigens in the draining lymph nodes. In addition, a model antigen, ovalbumin, expressed on the surface of recombinant Streptococcus gordonii is processed and presented on MHC class I molecules. This presentation is 10(6) times more efficient than that of soluble OVA protein. This exogenous pathway of MHC class I presentation is transporter associated with antigen processing (TAP)-dependent, indicating that there is a transport from phagolysosome to cytosol in dendritic cells. Thus, bacteria are shown to be a potentially useful mean for the correct delivery of exogenous antigens to be presented efficiently on MHC class I molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号