首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
赵晓磊  成功  杨华峰  刘丽娟  任英 《炼钢》2020,36(2):22-28
通过热力学软件FactSage 7.0和工业实践,对1 873 K下GCr15轴承钢脱氧过程中非金属夹杂物生成热力学进行研究。计算结果表明,当轴承钢中的w(Mg)>0.4×10-6时,钢中夹杂物由Al2O3转变为MgO·Al2O3;当钢中的w(Mg)>10×10-6时,钢中夹杂物主要为MgO。当轴承钢中w(Al)>100×10-6、w(Ca)>0.1×10-6时,钢中开始生成固态CaO·6Al2O3和CaO·2Al2O3夹杂物;当钢中w(Ca)>2×10-6时,钢中生成的夹杂物为液态钙铝酸盐;当钢中w(Ca)>13×10-6时,钢中开始生成固态CaO夹杂物。工业实践检测和热力学计算结果基本吻合,此外,研究发现纯铁液的脱氧热力学与轴承钢差异较大,因此...  相似文献   

2.
冯捷  包燕平  崔衡 《特殊钢》2010,31(6):16-20
运用热力学计算分析了镁对SPHC钢(0.065%C、0.025%Al)中夹杂物的作用,并结合80 t顶底复吹转炉流程工业试验,研究镁对SPHC钢中夹杂物的影响机理。热力学计算结果证明,当[Al]2/a[Mg]3≤7.69×1010,钢中就会生成单独的MgO·Al2O3;对SPHC钢进行喂0.875 kg/t镁线的工业试验结果表明,镁处理可细化夹杂,使团簇状Al2O3变为细小的MgO·Al2O3夹杂,MnS夹杂也得到了变性,夹杂物数量减少,提高了钢液的纯净度。  相似文献   

3.
王昆鹏  王郢  徐建飞  陈廷军  谢伟  姜敏 《钢铁》2022,57(6):42-49
 研究了轴承钢LF精炼和RH真空处理过程各类夹杂物的成分、种类和数量变化,并结合热力学模拟计算了夹杂物与钢液的界面参数,并对试验结果进行分析讨论。夹杂物分析结果表明,精炼25 min后,脱氧产物Al2O3消失,钢中夹杂物以纯尖晶石、含少量CaO的尖晶石、CaO·2Al2O3和CaO·Al2O3为主。继续精炼65 min至LF精炼结束,钢中夹杂物仍以纯尖晶石、含少量CaO的尖晶石、CaO·2Al2O3和CaO·Al2O3为主。RH真空处理25 min后,钢中夹杂物总数量较LF精炼结束降低75%,其中,纯尖晶石和含少量CaO的尖晶石去除率分别为99.5%和93.2%,CaO·2Al2O3去除率为67%。RH破空后钢中夹杂物以液态钙铝酸盐CaO·Al2O3和12CaO·7Al2O3为主。精炼过程尖晶石类夹杂物尺寸集中在10 μm以下,尺寸大于20 μm夹杂物主要为处于液相区的钙铝酸盐,这些钙铝酸盐在LF精炼前期就已经存在。与钢水接触角大于90°的固态夹杂物纯尖晶石、含少量CaO的尖晶石和CaO·2Al2O3在RH真空处理过程容易去除,与钢水接触角小于90°的液态夹杂物CaO·Al2O3和12CaO·7Al2O3不易去除。因此,将LF精炼结束的夹杂物控制为固态夹杂物有利于RH真空处理过程夹杂物的高效去除。热力学计算结果表明,当钢中w(T[O])为0.001 0%、w([Mg])大于0.000 18%时,脱氧产物Al2O3热力学上就不能稳定存在。铝脱氧、高碱度渣精炼条件下很难稳定地获得固态Al2O3夹杂物。为获得完全固态尖晶石或高熔点钙铝酸盐夹杂物,钢中w([Ca])需控制在0.000 1%以内。钢中w([Ca])大于0.000 2%,就具备生成液态夹杂物的热力学条件。  相似文献   

4.
针对国内某钢厂采用EAF→LF→VD→CC流程生产的SAE8620RH齿轮钢中夹杂物,通过SEM-EDS和热力学计算研究了夹杂物的形成机理和演变规律。结果表明,钢中的复合夹杂物主要是以MgO·Al2O3为核心外部包裹CaS的复合形式存在。LF精炼初期夹杂物主要为MgO·Al2O3,外部包裹有少量的CaS;经过钙处理后,部分MgO·Al2O3被改性为液态钙铝酸盐;经VD真空处理后,MgO·Al2O3外部包裹的CaS比例明显增加;铸坯中MgO·Al2O3外部重新析出MnS,形成MgO·Al2O3-(Ca, Mn)S。当钢液中的w(Al)=0.03%时,w(Mg)=1.85×10-6就可以生成MgO·Al2O3。在LF精炼初期,CaS主要是[S]和[Ca]直接反应生成...  相似文献   

5.
通过热力学计算和扫描电镜研究了铁水预处理-150 t BOF-钢包吹氩-LF-CSP流程LF精炼后喂硅钙线和钙铝线处理的Q235,SPA-H和DC01钢中夹杂物演变及精炼渣对其影响。结果表明,Ca处理前的精炼过程中,钢中Al2O3大部分已经被精炼渣(/%:52.97~55.63CaO,4.11~12.78SiO2,5.11~9.87MgO,22.93~31.72Al2O3,0.58~1.27FeO,0.01~0.07MnO)改性为MgO·Al2O3,根据Mg-Al-O生成优势区图,钢中有微量Mg就能使Al2O3变性为MgO·Al2O3尖晶石,钙处理主要是对MgO·Al2O3尖晶石的变性,因此需要保证充足的钙线喂入量,才能将高熔点铝镁和铝镁钙复合夹杂物变性到低熔点区域;为了避免生成高熔点CaS夹杂物,钙处理前[Al]=0.02%~0.04%时,[S]要小于0.001 4%。   相似文献   

6.
研究了EAF-LF-VD-CC流程冶炼气瓶钢30CrMo时精炼过程中含MgO·Al2O3夹杂物的生成和转化,对夹杂物进行了三维分析观察.研究结果表明:LF精炼30min后夹杂物中Mg含量减小,Ca含量增加,MgO·Al2O3夹杂物消失.LF精炼后期Mg含量变化不大,Ca含量减小,未出现MgO·Al2O3夹杂物;VD精炼过程中夹杂物中的Mg含量增加,Ca含量变化不大,重新生成了MgO·Al2O3夹杂物;精炼过程中MgO·Al2O3夹杂物可以向复合夹杂物转变的,但为防止精炼后期MgO·Al2O3夹杂物重新生成必须保证钢液中具有一定的钙含量.  相似文献   

7.
贾进  黄治成 《特殊钢》2022,43(4):10-14
对采用“120tBOF-LF-RH-260mm板坯CC”工艺流程生产的EH36钢,在精炼过程中的夹杂物演变规律进行了研究。通过现场各工序取样检测,结合夹杂物形成热力学计算,分析了夹杂物种类和尺寸的变化。研究表明,在“LF→RH→中间包”的精炼过程中,钢中夹杂物数量密度呈逐渐降低趋势,而其中直径>5μm的大颗粒夹杂物数量密度则逐渐增加。大颗粒夹杂物种类为MnO-SiO2系氧化物和CaO-Al2O3系钙铝酸盐,如3CaO·Al2O3,12CaO·Al2O3和CaO·Al2O3。在精炼过程中,当钢中Ca含量较低时,形成CaO·6Al2O3和CaO·2Al2O3,随着钢中Ca含量的升高,主要形成12CaO·7Al2O3和3CaO·Al2O3。  相似文献   

8.
刘南  成功  任英  张立峰 《工程科学学报》2022,44(12):2069-2080
大尺寸CaO?Al2O3类夹杂物容易引起轴承钢疲劳失效,大尺寸CaO?Al2O3类夹杂物的控制是生产高端GCr15轴承钢的关键因素之一。精炼过程中合金引入杂质元素、渣精炼和精炼过程中卷渣是铝脱氧轴承钢中大尺寸CaO?Al2O3类夹杂物的主要潜在来源。硅铁合金通常用来提高轴承钢的淬火和抗回火软化性。本文通过实验室实验、样品分析和热力学计算,研究了硅铁合金中金属钙元素对铝脱氧钢中夹杂物的影响。硅铁合金主要由深色的硅相和浅色的硅铁相组成,钙元素在硅相和硅铁相的界面处以金属化合物形式存在。研究发现,加入硅铁合金后,钢中总钙(T.Ca)含量增加,钢中的Al2O3和MgO·Al2O3夹杂物被改性为CaO?Al2O3类夹杂物,夹杂物尺寸随着夹杂物中CaO含量增加而减小,钢中并未生成大尺寸CaO?Al2O3类夹杂物。随着钢中T.Ca含量增加,夹杂物平均尺寸降低,钢中T.O含量增加,表明硅铁合金中金属钙元素不会直接引起钢中大尺寸CaO?Al2O3类夹杂物的生成。但是生成的小尺寸固相CaO?Al2O3类夹杂物在水口处粘附结瘤,结瘤物脱落后会成为钢中大尺寸CaO?Al2O3类夹杂物的来源之一。   相似文献   

9.
利用热力学软件计算了齿轮钢氧含量与夹杂物成分控制、夹杂物转变条件.结果表明,20CrMoH钢中具有较高塑性的非金属夹杂物成分(质量分数)为:SiO2 0%~10%、Al2O3 22%~55%、CaO 42%~60%、MgO 5%~10%,与之平衡的钢液中铝的质量分数大于0.020%,钙的质量分数大于0.7×10-6,a[O]为0.0005%左右;选择组成为CaO>40%、Al2O3 ≤ 37%、MgO 10%、(% CaO+% MgO)/% SiO2为10、SiO2含量尽量低的渣系,钢中Al2O3、MgO·Al2O3夹杂物可转变为低熔点的钙铝酸盐.试验发现LF和RH精炼结束时钢液T[O]含量均随炉渣碱度增加而降低,采用高Al2O3含量的炉渣对降低T[O]含量有利;精炼过程钢液中夹杂物按\  相似文献   

10.
通过取样检测结合热力学计算,分析了钙处理对成品无取向硅钢中夹杂物特征及硫化物夹杂的析出机制的影响。结果表明,钢中尺寸大于3μm的有害夹杂物主要是AlN、MgO-SiO2、CaO-Al2O3-SiO2类复合夹杂物及其与MgS、MnS、CaS的复合析出物。钙处理钢中没有检测到单独的Al2O3、SiO2及铝酸钙类夹杂物。钙处理钢中形成的液态3CaO·Al2O3、MgO·SiO2和Al2O3夹杂物被精炼渣吸收,改性去除了钢中大尺寸Al2O3夹杂物。钙处理钢中尺寸大于3μm的氧化物夹杂主要是含CaO和(或)CaS的Al2O3-SiO2类夹杂。硫化物在MgO-SiO2类氧化物表面的析出有利于其形貌趋于规则。钢...  相似文献   

11.
系统地研究了国内某钢厂生产的3 9Mn2V石油套管钢钙处理前后的总氧含量变化及夹杂物类型,从热力学上分析了钢中氧化铝和硫化锰的变性机理.研究结果表明现有工艺条件下喂入的硅钙量可以将Al2O3完全变性为炼钢温度下呈液态的12CaO· 7Al2O3和3CaO· Al2O3夹杂物,但不能将MnS完全变性为CaS.  相似文献   

12.
通过对LF前-LF后-中间包-连铸工艺生产40Cr钢各环节系统取样,以及电子显微镜对夹杂物的形貌、尺寸及组成的分析,发现40Cr铸坯中含有大量CaO(CaS)-Al2O3-MgO类复合夹杂.采用Factsage计算得到的CaO-CaS-Al2O3三元相图对钙处理后CaO(CaS)-Al2O3夹杂形成过程进行了理论计算;并对实际发现的CaO(CaS)-Al2O3-MgO类复合夹杂物的面扫描分布进行描边处理,探讨了该类夹杂物的组成和形成过程.经Factsage理论计算发现,CaO-CaS-Al2O3三元相图中液相区各成分质量分数为CaO 32%~58%、CaS 0%~5%以及Al2O342%~65%,钙处理后CaO含量有逐渐增加,CaS含量有逐渐减小趋势.结合夹杂物的面扫描分布发现,CaO(CaS)-Al2O3-MgO类复合夹杂物的组成为xCaO·yAl2O3+mMgO·nAl2O3+Al2O3+CaS,钙处理后Ca能够使Al2O3变性为CaO-Al2O3,但同时夹杂物中也有很高的CaS成分,随着钙处理的充分进行,CaS将由内及外向CaO-Al2O3逐渐转变.  相似文献   

13.
为了研究SWRCH45K冷镦钢在精炼和连铸过程中夹杂物形成和变化规律,在相关工序取钢样和渣样,采用SEM-EDS检测了钢中夹杂物形貌和成分,并结合夹杂物自动分析仪统计了夹杂物数量和尺寸分布。结果表明,LF精炼达到了较好的脱硫和脱氧效果,但钙处理后软吹流量过大造成钢水二次氧化,钢中夹杂物、氮和氧含量有所升高。LF进站时以Al2O3系和MgO-Al2O3系夹杂为主,在精炼渣的作用下,夹杂物转变为CaO-Al2O3系和CaO-MgO-Al2O3系。钙处理后,夹杂物中MgO含量明显降低,CaO含量升高,到中间包工序时钢中夹杂物已基本处于低熔点区。铸坯中夹杂物数量较少,主要为Al2O3-CaS、CaO-Al2O3-CaS和MgO-Al2O3-CaS夹杂物。  相似文献   

14.
对X70管线钢进行了六炉钙处理实验.结果表明:钙处理后管线钢生产的后续工序中钢中钙含量显著下降,夹杂物组成和形貌发生显著变化;二次氧化会降低管线钢钙处理效果,但钢中溶解钙和较高CaO含量的CaO-Al2O3复合夹杂可对钢水二次氧化产生的Al2O3发生改性作用;高级别管线钢钙处理效果与钢中钙含量、氧含量、硫含量、钢水二次氧化程度以及钙处理后续时间等有关,采用钢中Ca含量、[%Ca]Tot/[%Al]s、[%Ca]Tot/T[O]、ACR和[%Ca]Tot/[%S]作为钙处理效果的评判标准均存在缺陷.本文建议钙处理效果评判标准为:①铸坯中心部位或轧后板带中心部位不存在单纯的MnS夹杂;②中间包和结晶器中夹杂的nCaO/Al2O3应该与12CaO·7Al2O3相近;③钙处理后夹杂的nCaO/Al2O3应稍高于12CaO·7Al2O3的夹杂.同时还必须注意钙处理应在最后精炼工序的后期进行,尽量防止钢水的二次氧化.  相似文献   

15.
杜广巍  郭汉杰 《特殊钢》2016,37(4):18-22
55SiCr钢280 mm×325 mm铸坯(/%:0.55C,1.42Si,0.67Mn,0.008S,0.67Cr)的冶炼流程为80 t BOF-LF-RH-CC工艺。通过BOF出钢加Al和硅铁合金,同时加入精炼渣,控制精炼过程渣碱度R(CaO/SiO2)为2.0左右,RH≥20 min,软吹搅拌≥15 min,控制钢中夹杂物转变,得到洁净弹簧钢55SiCr。分析结果表明,LF精炼过程中夹杂物由早期的Al2O3-SiO2-MnO和Al2O3夹杂将逐渐转变为Al2O3-CaO-SiO2夹杂,RH真空处理后夹杂物全部转变为Al2O3-CaO-SiO2夹杂,LF开始精炼T[O]和[N]分别为36×10-6和26×10-6,铸坯T[O]、[N]分别为7×10-6和43×10-6,铸坯中夹杂物主要为Al2O3-CaO-SiO2和Al2O3,尺寸≤10μm。   相似文献   

16.
为减少钢中夹杂物和对夹杂物变性处理,防止连铸水口结瘤,对100 t LF 5炉SWRCH22A冷镦钢(/%:0.18~0.20C,0.44~0.62Si,0.85~0.89Mn,0.012~0.015P,0.006~0.009S,0~0.004Ca,0.000 7~0.0010B,0.011~0.088Als)夹杂物钙处理进行了Ca-Al,Al-O,Al-S,Ca-S平衡热力学计算和氧氮分析。得出1 873 K[Ca]-[Al],a[O]-[Al]和[S]-[Al]平衡曲线,1 823~1 923 K[Ca]-[S]平衡曲线,和5炉钢对应的实测值。通过分析,得出优化LF精炼工艺:(1)精炼终渣MgO=6%、SiO2<6%、CaO/Al2O3=1.6~1.8;(2)转炉下渣量700 kg左右,精炼终渣量2 000 kg左右;(3)根据精炼终渣CaO/Al2O3=1.6~1.8的目标来决定造渣料的加入量;(4)避免喂钙线时钢水剧烈翻腾,并防止精炼结束到中间包过程钢水的氧化  相似文献   

17.
针对某石油套管钢管壁内缺陷,采用扫描电镜-能谱仪(SEM-EDS)分析,并结合FactSage8.0软件计算进行研究,结果表明缺陷纵向面主要由浅条纹及深条纹组成,浅条纹处存在大量MgO·Al2O3夹杂物,深条纹处有大量的Al2O3、MgO·Al2O3、CaO·Al2O3·SiO2等夹杂物聚集在一起.缺陷横截面上的夹杂物主要为Ca O·Al2O3·SiO2、CaO·Al2O3·MgO和CaO·Al2O3·MgO·SiO23类.推测钢管壁内缺陷形成机理主要为:(1)大包钢水在浇注末期钢水卷带钢包渣进入中间包钢水中,该渣滴随后吸附钢中高Al2O3含量的微细x Al2O3<...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号