首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以粉煤灰替代活性炭,用废铁屑及具有催化性能的稀土Gd作为微电解材料处理有毒有害苯胺废水,探究Gd对处理苯胺废水的影响。采用单因素法优化与确定了本方法处理苯胺废水的有关影响因素,采用正交实验法考察了影响因素的主次顺序及优化组合条件。结果表明,影响因素的主次顺序为p HGd投加量反应时间粉煤灰铁屑质量比,优化组合条件:p H为3.5,质量浓度3.0 g/L的Gd溶液的投加量16 m L,反应时间1.5 h,粉煤灰、铁屑质量比为1:2,在此条件下苯胺降解率为85.7%,Gd使苯胺的降解率提高了16.4个百分点。  相似文献   

2.
考察铁屑投加量、碳铁质量比、废水pH、曝气量、反应时间对品红废水脱色率、COD去除率的影响,采用芬顿法进一步处理微电解出水。结果表明,在废水pH 2.5,铁屑投加量60 g/L,碳铁质量比2∶1,曝气量600 mL/(min·L),反应时间3 h处理效果最好,脱色率和COD去除率分别达到了94.42%,66.28%;不调节微电解出水pH,投加12 mL/L FeSO_4(浓度0.1 mol/L),6 mL/L H_2O_2(质量分数30%),反应20 min,出水COD 55.49 mg/L,色度58.9倍。  相似文献   

3.
考察铁屑投加量、碳铁质量比、废水pH、曝气量、反应时间对品红废水脱色率、COD去除率的影响,采用芬顿法进一步处理微电解出水。结果表明,在废水pH 2.5,铁屑投加量60 g/L,碳铁质量比2∶1,曝气量600 mL/(min·L),反应时间3 h处理效果最好,脱色率和COD去除率分别达到了94.42%,66.28%;不调节微电解出水pH,投加12 mL/L FeSO_4(浓度0.1 mol/L),6 mL/L H_2O_2(质量分数30%),反应20 min,出水COD 55.49 mg/L,色度58.9倍。  相似文献   

4.
采用铁碳微电解与过氧乙酸联用的方法处理含罗丹明B(RhB)废水。研究了铁粉投加量、铁碳比、pH、过氧乙酸投加量对处理效果的影响,并确定了最佳反应条件。结果表明,室温下,铁粉投加量为1.8 g/L、m(Fe)∶m(C)为1∶1,初始pH为4、过氧乙酸投加量为0.3 mmol/L为最优反应条件。处理RhB废水40 min后,脱色率可达到92.1%,TOC去除率达到80.6%。与单独的铁碳微电解法相比,去除率明显增加。  相似文献   

5.
刘洋  黄瑞敏  刘欣  文淦斌 《电镀与涂饰》2014,(23):1030-1032
为去除化学镀镍废水中的镍离子和氨氮,研究了铁碳微电解–Fenton联合处理技术。探讨了废水初始p H、铁屑投加量、铁屑与活性炭质量比、反应时间和H2O2投加量对处理效果的影响。结果表明,当初始p H为3,铁屑投加量为40 g/L,铁炭质量比为2∶1,H2O2/Fe2+为1.2(质量比),反应20 min后镍离子的去除率达99.8%以上,出水镍离子含量<0.1 mg/L,氨氮去除率达46.1%。  相似文献   

6.
用铁碳微电解联合过硫酸盐深度处理造纸废水,考察了反应时间、初始pH、铁碳质量比、铁碳总投加量、过硫酸盐(PS)投加量等因素对处理效果的影响,并对不同体系下的废水处理效果进行比较。结果表明:铁碳微电解联合过硫酸盐工艺能够有效深度处理造纸废水,在反应时间为150 min、pH=5、m(Fe~0)∶m(AC)=2∶3、铁碳总投加量为0.15 g、PS投加量为7.5 mmol/L的条件下,COD和色度去除率分别在63%、95%左右,出水水质满足造纸工业排放标准要求(GB 3544—2008)。  相似文献   

7.
采用Fe/C微电解-Fenton法对锂电池阴极材料生产中产生的高浓度废水进行预处理实验。通过正交和单因素实验,结合GC-MS分析,确定各参数的最佳反应条件值。实验结果表明,控制铁碳比为3∶1,铁屑投加量为150 g/L,p H=3,反应时间为60 min时,运用Fe/C微电解可以对锂电池阴极生产废水COD的去除率达到46%左右;以Fe/C微电解出水为基础,调节进水p H=3、H2O2(30%)投加量为2 m L/L、反应时间为60 min时,在室温下对原水COD的去除率为71%左右。B/C也由0.11提高到0.45,废水的可生化性大大提高。同时通过GC-MS进一步验证,确定Fe/C微电解-Fenton组合工艺对NMP(N-甲基吡咯烷酮)具有较好的降解作用。  相似文献   

8.
采用微电解工艺及微电解-Fenton工艺处理对氨基苯酚废水。结果表明,处理200 mL浓度为0.5 g/L对氨基苯酚废水,单独微电解工艺,在pH为3,废铁屑投加量50 g/L,铁炭质量比为20∶1,反应60 min, COD和色度去除率分别为40.25%和42.28%。微电解-Fenton联用,在pH为3,铁炭质量比为20∶1,双氧水投加量30 mL/L,反应60 min, COD和色度去除率分别达到93.72%和95.7%。  相似文献   

9.
南小英  成岳  徐风琴 《硅酸盐通报》2012,31(6):1393-1397
以四丙基溴化铵(TPABr)为模板剂合成ZSM-5分子筛并采用XRD、SEM进行了表征,研究ZSM-5分子筛、铁屑和铁屑/ZSM-5分子筛对染料废水的处理效果,分别考察了染料废水浓度、pH、反应时间、ZSM-5分子筛和铁屑投加量对活性艳兰KN-R染料废水脱色的影响.研究结果表明:铁屑/ZSM-5分子筛联合处理染料废水的效果优于单独使用铁屑和ZSM-5分子筛;在铁屑投加量50 g/L,ZSM-5分子筛投加量为4 g/L,pH值为6,反应60 min条件下,活性艳兰染料废水的脱色率可达到99.05%.  相似文献   

10.
铁炭微电解深度处理焦化废水的研究   总被引:9,自引:5,他引:4  
采用铁炭微电解工艺对焦化废水生化处理出水进行深度处理研究。考察pH值、反应时间、铁屑和颗粒活性炭的投加量对处理效果的影响,并确定了最佳反应条件。动态连续试验结果表明,在原水初始pH值为3,反应时间为4 h,铁屑和颗粒活性炭的投加量分别为40和10 g/L,回流比R分别为100%和200%时,出水COD分别达到《钢铁工业污染物排放标准》(GB 13456—92)中的二级和一级标准,出水氨氮可以达到《钢铁工业污染物排放标准》(GB 13456—92)中的二级排放标准。研究结果表明,铁炭微电解是深度处理焦化废水的一种有效工艺。  相似文献   

11.
针对COD高达300 000 mg/L的机械加工清洗废水,采用破乳—热解—铁炭微电解—Fenton氧化联合工艺进行处理。研究结果表明:加入10 g/L的Al2(SO4)3破乳后,热解20 min的处理效果最好;铁炭微电解最佳条件为:维持p H至3.5,铁屑20 g/L,铁炭质量比为1∶1,反应时间4 h;Fenton氧化最佳条件为:维持p H至3.5,30%H2O2投加量为20 m L/L,反应时间4 h,再调节p H至9后沉淀,处理后废水COD可降为20 000 mg/L。  相似文献   

12.
以阿奇霉素制药废水为研究对象,采用了Fe/C微电解处理方法,探讨了pH值、铁碳投加量比、铁屑投加量等各个因素条件下对Fe/C微电解处理阿奇霉素制药废水产生的影响。试验结果表明,在pH值为3.0,铁碳投加质量比为1:1,铁屑投加量为150 g/L,搅拌转速为150 r/min,反应时间为2 h条件下,COD的去除率为49.43%。  相似文献   

13.
固体废弃物预处理中药制药废水的实验研究   总被引:1,自引:0,他引:1  
采用固体废弃物(铁屑和炉渣)预处理中药制药废水,并以COD去除率和脱色率为指标考察其处理效果。考察了废水pH值、试剂投加量、反应时间等对COD去除率及脱色率的影响,确定了最适工艺条件。结果表明,在弱酸性条件下内电解处理效果较好;加入适量的H2O2可明显提高对COD和色度的去除效果;内电解处理后投加适量的石灰乳对废水的COD去除和脱色均有利。废水预处理的最适工艺条件为:常温下,废水的pH为5.0~6.5,铁屑加入量为60 g/L,炉渣加入量为100 g/L,H2O2加入量为20 mL/L,反应30 min后,加入石灰乳(16 mL/L)调节pH至9。在此条件下,废水COD去除率及脱色率可分别达到73%和96%以上,而且处理成本较低。  相似文献   

14.
以Fe0作为H2O2的催化剂,建立了Fe0催化Fenton法(Fe0-Fenton)处理染料酸性橙Ⅱ(AOⅡ)模拟废水.Fe0的添加保证了溶液中较高的Fe2+含量,促进了H2O2的分解并提高了Fenton反应的降解效率.同时考察了初始pH、铁屑投加量、H20:投加量、铁屑粒径和染料初始含量等因素对降解效果的影响,结果表明,在溶液初始pH为3、铁屑投加量为10g·L-1、H2O2投加量为10mmol·L-I,铁屑粒径为0.84~0.42mm的最佳处理条件下,初始质量浓度200mg·L-1的AOII溶液在120 min内脱色率达到100%.  相似文献   

15.
利用混凝+铁炭微电解/H2O2+活性炭吸附法对高浓度的化学清洗废水进行联合处理,同时简单分析了反应机理及影响因素。通过实验确定了混凝最佳条件(pH=8、PAC投加量为50 mg/L、PAM投加量2 mg/L、沉淀时间40 min),铁炭微电解/H2O2最佳条件〔pH=2、(Fe+C)总投加量60 g/L、m(Fe)∶m(C)为1∶1、H2O2投加量4 mL/L、反应时间60 min〕,活性炭吸附最佳条件(吸附时间120 min、pH=6、活性炭投加量20 g/L)。结果表明,在上述最佳工艺条件下对化学清洗废水进行处理,COD去除率可达98%以上,达到国家一级排放标准(GB 8978—1996)要求。  相似文献   

16.
针对传统微电解材料只适用于酸性废水的局限,对铁碳微电解材料进行改性,用于甲基橙模拟印染废水的处理,确定了处理的最佳工艺参数。结果表明:新型微电解材料在pH为4~5、11~12内对甲基橙均有较好的降解效果,最佳反应时间为3 h,最佳投加量为340 g/L。采用印染退浆废水进行对比实验,结果表明:新型微电解材料在COD去除率和可生化性提高方面均明显优于市售微电解材料,经新型微电解材料预处理后B/C提高了近5倍。  相似文献   

17.
TiO2光催化处理含甲基橙微污染水的动力学研究   总被引:3,自引:0,他引:3  
通过溶胶-凝胶和浸渍相结合的方法制备出负载型纳米TiO2光催化剂,在光催化氧化反应器中对含有甲基橙的微污染水进行了光催化氧化研究.确定影响甲基橙光催化氧化的主要影响因素为TiO2光催化剂投加量、氧化剂投加量.结果表明,光催化氧化要比无催化剂的光氧化效果好,甲基橙的降解过程符合一级反应动力学模型;最佳的催化剂投加质量浓度为0.40 g/L;增加H2O2的投加量有助于甲基橙的去除.  相似文献   

18.
采用Fe/C微电解—Fenton氧化法处理松节油加工废水,Fe/C微电解单元主要研究了铁屑投加量、铁炭比、pH对处理效果的影响;Fenton氧化单元主要研究了H2O2投加量、超声、UV对Fenton处理效果的影响。结果表明:在铁屑投加量为100 g/L,铁炭比为1,pH为2时,COD、色度的去除率达到84.2%、96%,B/C从0.12升高到0.41;在H2O2投加量为8 mL,pH为3,超声功率为100 W的条件下,COD去除率达到98.5%,B/C从0.41提高到0.65,最终处理后废水COD≤100 mg/L,色度≤5。  相似文献   

19.
通过酸析—铁碳微电解—Fenton氧化组合工艺对二硝基苯胺类农药生产废水进行预处理,并对工艺参数进行优化。酸析处理最佳工艺条件:pH为2.0;铁碳微电解最佳工艺条件:m(Fe)∶m(C)为2,投加量2.0 g/L;Fenton氧化处理最佳工艺条件:pH为2.5,H_2O_2投加量为293.8 mmol/L,无需额外投加Fe~(2+)。经预处理后,废水COD从24 610 mg/L降至2 543.4 mg/L,去除率达89.7%。BaCl_2和PAM的投加可降低酸析废物的含水率,将酸析废物减量33.0%。  相似文献   

20.
铁碳微电解/H2O2混凝法处理焦化废水的试验研究   总被引:1,自引:0,他引:1  
采用一次铁碳微电解/H2O2混凝-二次铁碳微电解/H2O2混凝法处理高色度、高COD、高毒性的焦化废水.试验确定的工艺条件:(1)铁碳微电解/H2O2法去除COD的最佳条件:pH为2、H2O2投加量为4.4 mL-1、反应时间为180min,铁屑投加量为30g-L-1、m(Fe):m(C)为3:1.(2)铁碳微电解/H2O2法去除色度的最佳条件:pH为3、H202投加量为1.8mL·L-1、反应时间为120min、铁屑投加量为30g·L-1、m(Fe):m(C)为3:1.(3)混凝的最佳条件:pH为7、FeCl3的投加量为100 mg·L-1、PAM的投加量为2 mg·L-1.结果表明,在上述最佳工艺条件下对该废水进行处理,COD和色度去除率分别可达97%和99%以上,均可达到污水综合排放标准(GB 8978-1996)中的一级标准.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号