首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
热解活化法制备高吸附性能椰壳活性炭   总被引:1,自引:1,他引:0  
以椰壳为原料,采用高温直接热解活化法制备高吸附性能活性炭。研究了活化温度、活化时间对活性炭吸附性能的影响。研究结果表明,活化温度为 900 ℃,热解活化时间为 8 h,升温速率为 10 ℃/min,制得碘吸附值为 1 628.54 mg/g,亚甲基蓝吸附值为 375 mg/g 的高吸附性能椰壳活性炭,得率为 9.41 %。氮气吸附实验结果表明,该活性炭比表面积 1 723 m2/g、总孔容积 0.87 cm3/g、微孔容积 0.68 cm3/g、中孔容积0.18 cm3/g、平均孔径 2.03 nm。热解活化制备的椰壳活性炭样品性能优于市售水蒸气法椰壳净水活性炭国家标准。  相似文献   

2.
在膨润土(Bent)表面接枝四乙烯五胺(TEPA)制备四乙烯五胺改性膨润土(TEPA/Bent),利用FTIR(红外光谱仪)、XRD(X射线衍射仪)、EA(元素分析)、SEM(扫描电镜)和EDS(能谱仪)对其进行表征分析,并考察对水体中阴离子染料酸性大红GR的吸附性能。结果表明:TEPA成功接枝于膨润土表面,提高了膨润土对酸性大红GR的吸附量;pH对TEPA/Bent表面电位和吸附量影响较大;随着初始pH的增大,TEPA/Bent的zeta电位由正变为负,对酸性大红GR吸附量减少;在pH=3,染料初始质量浓度为100mg/L条件下,TEPA/Bent对酸性大红GR的吸附量可达44.63mg/g;TEPA/Bent对酸性大红GR的吸附动力学符合准二级动力学模型;吸附等温线符合Langmuir吸附等温模型,为单分子层吸附;吸附热力学表明该吸附为自发吸热过程。吸附剂经过5次再生后,吸附量仍保持为初始80%以上。研究表明,TEPA/Bent是从水溶液中去除阴离子染料的潜在有效吸附剂。  相似文献   

3.
以椰壳为原料,经过低温干馏、活化,制备了椰壳活性炭。以苯作为吸附质,对制备的椰壳活性炭进行了吸附实验,探索温度对椰壳活性炭吸附性能的影响以及活性炭微观吸附机制,采用比表面积及孔径对椰壳活性炭进行了表征。结果表明,30℃时所制备的活性炭对苯的饱和吸附量为437.0 mg/g,合适的再生温度为150℃。所制备的椰壳活性炭最大比表面积为1 860 m2/g, BJH孔径为48 nm。吸附曲线表明,椰壳活性炭吸附属于BDDT分类中的Ⅱ型;在温度(T)<40℃或压力(P/P_0)>0.5时,椰壳活性炭对非极性苯分子的吸附类型由初始的单分子层吸附转变为多分子层与毛细管凝聚相结合的物理吸附,有利于提高活性炭对苯的吸附效果。  相似文献   

4.
采用水蒸气活化法制备得到微孔发达的椰壳活性炭,并研究其对肌酐的吸附性能。以850℃活化所得微孔率最高的活性炭为吸附剂,考察了活性炭投加量、吸附时间、溶液pH值及肌酐初始质量浓度对肌酐吸附性能的影响,并采用准一级、准二级动力学方程对实验数据进行拟合处理。结果表明,制备所得4种椰壳活性炭对肌酐均有较强的吸附能力;微孔率越高,吸附量越大;37℃下,椰壳活性炭对肌酐的吸附平衡时间为6 h,平衡吸附量达到97.88 mg/g;酸性环境更有利于肌酐吸附;平衡吸附量随肌酐初始质量浓度增加而升高;吸附过程符合准二级动力学模型,以化学吸附为主。  相似文献   

5.
CO_2活化制备椰壳基活性炭   总被引:6,自引:1,他引:6  
以600℃下炭化2h后的椰壳炭化料为原料,通过CO2活化制备椰壳基活性炭,研究了活化温度、活化时间、CO2流量对活性炭得率及其吸附性能的影响。同时测定了该活性炭的N2吸附等温线,通过非定域化密度函数理论表征活性炭孔径分布。在适宜的工艺条件,所制备活性炭的得率为24%,碘吸附值为1428mg/g,其比表面积、总孔容积、微孔容积分别可达:1653m2/g,1.045cm3/g,0.8582cm3/g,且以2nm以下的微孔为主,产品性能达到了双层电容器专用活性炭(LY/T1617—2004)标准。  相似文献   

6.
魏海博  陈一民  白书欣 《广州化工》2012,40(14):101-104
以椰壳炭化料为原料,采用KOH活化法制备活性炭,研究了KOH/炭化料的质量比、升温速率、活化温度和活化时间对活性性能的影响。实验结果表明,KOH/炭化料的质量比是该方法制备活性炭的最主要影响因素,较优的工艺参数为:KOH/炭化料的质量比为4∶1、升温速率为5℃/min、活化温度为800℃、活化时间为1 h。同时制备得到了比表面积达到2413 m2/g、微孔容积达到1.02 cm3/g,且以0.9 nm以下微孔为主的椰壳活性炭。  相似文献   

7.
采用水蒸气活化法制备得到椰壳活性炭,以850℃活化得到微孔率最高的活性炭为吸附剂,考察其对肌酐的体外吸附性能,探讨了吸附时间、肌酐初始质量浓度、吸附温度及pH值对肌酐吸附量的影响。结果表明,微孔率高的(71.0%)椰壳活性炭对肌酐吸附性能良好;30min内吸附量迅速升至57.8mg/g,7h时达到平衡,平衡吸附量为76.4mg/g;在30~70℃温度范围内,肌酐吸附量随温度升高而增加;酸性环境有利于肌酐的吸附,pH值为2时吸附量达到最大,为123.55mg/g。  相似文献   

8.
采用微波加热椰壳水蒸气活化法制备了活性炭,采用H-K方程、DFT理论表征了活性炭的孔结构,该活性炭的BET比表面积889m^2/g,平均孔径0.55nm;采用自制的实验装置进行了微波椰壳基活性炭吸附苯系物的工艺探索,研究了气体流速和吸附时间对活性炭吸附苯系物量的影响,当气体流速15m^3/h,吸附时间8d,活性炭5g时,可将实验箱内300mg的苯系物全部脱除,达到了国标GB/T18883-2002对空气中苯系物浓度的要求。  相似文献   

9.
活性炭对汞离子的吸附动力学研究   总被引:2,自引:0,他引:2  
以椰壳活性炭为原料,采用水蒸气法二次活化制备得到了微孔含量丰富的椰壳活性炭,其亚甲基蓝吸附值165 mg/g,碘吸附值1 090 mg/g。采用氮气吸附等温线对其比表面积和孔结构进行了表征。以氯化汞为污染目标物,考察了活性炭对于Hg2+的吸附性能。结果表明,活性炭对Hg2+的吸附量与其比表面积以及孔结构有关。吸附动力学实验表明活性炭吸附是一个快速吸附和缓慢吸附共存的双速过程,可以用Lagergren伪二级速率方程进行拟合;吸附等温线实验表明活性炭吸附Hg2+是一个放热的过程,属于单分子层吸附,符合Langmuir吸附等温式。  相似文献   

10.
水蒸气-微波法制备颗粒活性炭新工艺   总被引:10,自引:0,他引:10  
研究了以椰壳炭化料为原料 ,采用水蒸气 微波法制备颗粒活性炭的可行性。探讨了微波功率、活化时间及水蒸气流量对活性炭性能的影响。得到了水蒸气 微波法制备颗粒活性炭的最佳工艺条件 :微波功率 70 0W、活化时间 3min、水蒸气流量 4.8mL/min。用此工艺条件制得的活性炭碘吸附值 10 31mg/g、亚甲蓝脱色力 10mL/0 .1g、得率 60 .8%。该工艺所需活化时间为传统方法的 1/60 ,得率为传统方法的 2倍左右。  相似文献   

11.
以光合竹为原料,研究了其制备活性炭的工艺条件,考察了活化剂浓度、固液比、活化时间以及活化温度等因素对活性炭碘吸附值、亚甲基蓝吸附值的影响。实验结果表明,用化学法制备光合竹活性炭的最佳工艺参数为:以Zn Cl2为活化剂,Zn Cl2浓度为5 mol/L,活化剂浸渍时间为2 h,固液比为1∶4,活化时间为60 min,活化温度为500℃。在此工艺条件下所制备活性炭得率为48.8%,亚甲基蓝吸附值为197.14 mg/g,碘吸附值为1 034.30 mg/g,样品质量指标接近净化用活性炭标准。  相似文献   

12.
以椰壳为原料,采用磷酸活化法制备椰壳基不定型颗粒活性炭,分析了反应条件对活性炭性能的影响。研究结果表明,随着浸渍比的升高,活性炭醋酸吸附量和醋酸锌吸附量呈不断上升的趋势,表观密度和强度呈下降趋势。活化温度和烘干温度的升高有利于活性炭醋酸锌吸附量、表观密度和强度的提高。在浸渍比1.25:1,活化温度400 ℃和烘干温度120 ℃,制得不定型颗粒活性炭的醋酸吸附量546 mg/g、醋酸锌吸附量61 g/L、表观密度0.395 g/mL和强度84.4%,符合国家标准GB/T 13803.5-1999的要求。  相似文献   

13.
以晋城无烟煤为原料,与KOH活化剂混合均匀,利用正交实验,通过碘吸附值和亚甲基蓝吸附值对其活化功率、活化时间和碱度等工艺条件进行探讨,采用扫描电镜(SEM)和BET比表面等检测手段,对KOH最佳工艺条件下制备的活性炭进行了表征.实验结果表明:KOH微波活化制备晋城无烟煤基活性炭的最佳工艺条件为活化功率480 W,活化时间7.5min,碱度4∶1,此时制备的活性炭吸附效果最好,其碘吸附值为989.4mg/g,比表面积为1 057.2m2/g,其工艺条件对活性炭吸附的影响递减顺序为:活化功率、活化时间、碱度.  相似文献   

14.
活性炭纤维对水中酸性大红的吸附脱色研究   总被引:2,自引:0,他引:2  
研究了活性炭纤维(ACF)对水中酸性大红的吸附脱色试验。温度为15℃~20℃,滤速为6mL/min时,浓度为12mg/L的酸性大红脱色率达98%以上。活性炭纤维经20次吸附与解吸实验,吸附脱色性能没有明显降低。与颗粒状活性炭(GAC)相比,活性炭纤维吸附脱色酸性大红的吸附量大,可望作为对吸附脱色酸性大红废水的方法。  相似文献   

15.
制备了Fe-Al柱撑膨润土,研究了其对染料酸性大红的吸附去除性能,结果表明:Fe-Al柱撑膨润土对染料酸性大红有很好的去除效果,当其用量为0.1g时,染料酸性大红的吸附去除率达到92.6%;Fe-Al柱撑膨润土对染料酸性大红的吸附在60分钟达到平衡;pH值对染料酸性大红的去除有一定的影响,在酸性和碱性条件下的去除率大于中性。平衡吸附量qe与平衡质量浓度pe之间的关系符合Freundlich和Langmuir等温吸附方程所描述的规律。  相似文献   

16.
以微波酸活化赤泥为吸附剂,对酸性大红染料废水进行吸附脱色处理,考察了吸附时间、pH、吸附剂投加量等因素对吸附脱色效果的影响.在吸附时间为2 h、pH为4.0、吸附剂投加量为15 g/L时,活化赤泥对酸性大红的脱色效果较好,去除率可达97.7%.对实验数据进行相关数学模型拟合,结果表明该等温吸附平衡符合Langmuir模型,吸附过程动力学符合准二级反应速率方程,线性相关系数良好.  相似文献   

17.
以椰壳活性炭为原料,经硝酸活化再采用NaCl或NaBr溶液化学浸渍改性制备燃煤烟气脱汞吸附剂。通过N_2吸附-脱附(BET),扫描电子显微镜(SEM),X射线光电子能谱(XPS)对制备的吸附剂进行表征,并且采用模拟烟气在管道喷射装置内考察汞吸附脱除性能。结果表明:与原始椰壳活性炭相比,经硝酸活化后的椰壳活性炭汞吸附能力得到提高;而采用NaBr改性后的椰壳活性炭脱汞效果最好。在管道喷射实验装置内,经过1 mol/L NaBr改性后的椰壳活性炭,在模拟烟气温度120℃,碳汞质量比8 000,停留时间2 s条件下,脱汞率达到92.7%。改性后的椰壳活性炭是一种具有潜在应用价值的优良脱汞吸附剂。  相似文献   

18.
以咖啡壳为原料、KOH为化学活化剂制备高性能活性炭,在单因素试验探索活化时间、活化温度和碱炭比对活性炭碘吸附值影响的基础上,运用响应面法进行活化工艺参数优化。通过对模型优化确定最佳工艺参数为活化时间5 min、活化温度950℃和碱炭比(KOH和咖啡壳炭化料质量比,下同)4∶1;该条件下制备的活性炭的碘吸附值为2 214 mg/g(实验值),和预测值(2 209.5 mg/g)基本相符,验证了模型的有效性。  相似文献   

19.
椰壳、椰壳渣与石油焦性能差异明显,必须脱灰处理才能作为高比表面积活性炭优质原料.正交实验结果表明:采用10%的H3PO4,常温下处理3 h,椰壳灰分可脱至0.42%,椰壳渣可脱至0.75%.改进椰壳酸水解工艺后,椰壳渣灰分也可脱至0.40%,满足制备高比表面积活性炭优质原料要求.活化后产品酸洗脱灰可提高吸附性能9%,浮选脱灰可提高吸附性能11%.  相似文献   

20.
研究了活性炭纤维(ACF)对水中酸性大红的吸附脱色试验。温度为15℃-20℃,滤速为6mL/min时,浓度为12mg/L的酸性大红脱色率达98%以上。活性炭纤维经20次吸附与解吸实验,吸附脱色性能没有明显降低。与颗粒状活性炭(GAC)相比,活性炭纤维吸附脱色酸性大红的吸附量大。可望作为吸附脱色酸性大红废水的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号