首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The structural and functional properties of ultrathin (<5 nm) poly(aniline) (PANI) films deposited on indium-tin oxide (ITO) have been investigated using electrochemical and attenuated total reflection (ATR) spectroscopy methods. Layer-by-layer (LbL) self-assembly was used to form films composed of one and two bilayers of PANI and poly(acrylic acid) (PAA), as well as single PANI layers of approximately monolayer thickness. PANI deposited on an ITO electrode is electroactive at neutral pH, both with and without codeposition of an acid dopant such as PAA. In the absence of PAA, it is hypothesized that the acidic surface groups on ITO can function as the counterion. The pH response of PANI single layer, (PANI/PAA)(1), and (PANI/PAA)(2) films was examined using both potentiometry and ATR spectroscopy. Near-Nernstian potentiometric responses over pH 3-9 were observed for all three types of films, consistent with the weak acid-base behavior expected of polymers assembled in a LbL film. The ATR spectral sensitivity to pH increases as the number of layers in the film increases, with the highest sensitivity achieved by monitoring the absorbance at 800 nm (predominately due to the emeraldine salt form) of (PANI/PAA)(2) films. Codeposition of PANI and PAA appears to produce a wide distribution of strengths of acidic and basic sites in the film and thus a large linear dynamic range, up to six pH units. The water contact angle of (PANI/PAA)(2) is approximately 16 degrees, which is considerably more hydrophilic than either the PANI single layer or (PANI/PAA)(1) films ( approximately 40 degrees ). This film is shown to be a suitable substrate for deposition of a planar supported phospholipid bilayer. The supported membrane is highly impermeable to protons, which makes this architecture useful for monitoring transmembrane charge transport.  相似文献   

2.
In this work, electric field directed layer-by-layer assembly is proposed for fabricating patterned sensing coatings. The Neutral Red (NR) colorimetric pH sensitive indicator and the polymers poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) which had been already proposed in the past by several groups to incorporate diverse indicators are used here in two different structures with the aim of obtaining selective deposition. The first structure studied combines NR and PAA while the second structure combines both NR and PAH with PAA. The results obtained in this work revealed that the LbL material adsorption over the electrodes was enhanced or even inhibited when applying a specific direct current voltage between them under some other particular fabrication parameters. Particularly, by adjusting to 7 the pH of the solutions used for the fabrication of the films and applying 1.4 V between the electrodes, laterally selective deposition was obtained with both of the pH sensing structures proposed here. This strategy allows the fabrication of pH-sensitive patterned films.  相似文献   

3.
Li J  Li Y  Zhang Y  Wei G 《Analytical chemistry》2012,84(4):1888-1893
A novel strategy to improve the sensitivity of molecularly imprinted polymer (MIP) sensors was proposed. An electrocatalytic Prussian blue (PB) film was electrochemically polymerized on an electrode surface to fabricate an MIP electrochemical sensor using oxytetracycline (OTC) as a template. The OTC determination relied on a competition reaction between OTC and glucose-oxidase-labeled OTC and the catalytic reduction of hydrogen peroxide by the modified PB film. Experimental results show that double amplification, which is based on the catalysis of inorganic PB films and the enzymatic effect of glucose oxidase, can remarkably increase the assay sensitivity. The main experimental conditions (including electrocatalysis of the PB film, pH effects, incubation and competition times, and anti-interference) were optimized. This novel MIP sensor can offer an femtomole detection limit for OTC. In addition, the feasibility of its practical applications has been demonstrated in the analysis of a series of real milk samples.  相似文献   

4.
An approach to improve the analytical performance of a Prussian Blue (PB)-based hydrogen peroxide transducer is described. In support of this objective, both the stabilizing and anti-interferent properties of nonconducting films were used. Electropolymerization on the top surface of PB modified electrodes is possible due to the high oxidizing ability of Berlin Green, and the growth of nonconductive polymers may be independently monitored by investigating the redox activity of the inorganic polycrystal. The best performance characteristics, which are advantageous over existing H/sub 2/O/sub 2/ sensors, were obtained for PB electrodes covered with electropolymerized o-phenylenediamine (1,2-diaminobenzene). The reported transducer remained at the 100% response state for more than 20 h under continuous flow of 0.1-mM hydrogen peroxide (flow rate 1 mlmin/sup -1/), which improves the stability level among the selective H/sub 2/O/sub 2/ sensors by one order of magnitude. The selectivity factor of the PB-poly (1,2-diaminobenzene) based transducer relative to ascorbate is nominally 600. PB-poly(1,2-diaminobenzene) modified electrode allows the detection hydrogen peroxide in the flow-injection mode down to 10/sup -7/ M with sensitivity of 0.3 AM/sup -1/cm/sup -2/, which is two times lower compared to the uncovered PB-based transducer.  相似文献   

5.
Fiber-optic chemical sensing has been demonstrated with a side-polished single-mode optical fiber, evanescently coupled to chemically sensitive Langmuir-Blodgett (LB) overlay waveguides. The sensors exhibit a channel-dropping response centered on a wavelength that is dependent on the thickness and the refractive index of the overlay waveguide. It has been shown that pH-sensitive organic dyes proved to be suitable materials for the formation of an overlay waveguide whereas LB deposition provides the required thickness control. A theoretical model of the sensor response, based on the Kramers-Kronig relations and phase matching of the guided modes within the optical fiber and overlay waveguide, shows good agreement with experimental results.  相似文献   

6.
Microscale implantable fluorescent sensors that can be transdermally interrogated using light are being pursued as a minimally invasive biochemical monitoring technology for in vivo applications. Previously, we reported the development of an enzymatic-based sensing platform characterized using glucose as a model biochemical analyte for minimally invasive diabetic monitoring. In this work, surface-adsorbed polyelectrolyte nanofilms were employed to modulate the relative fluxes of glucose and oxygen into the sensor, allowing response characteristics, namely, analytical range and sensitivity, to be tuned. Modulation of substrate transport properties were obtained by varying surface-adsorbed nanofilm thicknesses, ionic strength of assembly conditions, and outermost constituents. In general, increasing film thickness through additional cycles of adsorption resulted in consistently decreased glucose flux, correspondingly decreasing sensitivity and increasing range. While the two components of the nanofilms remained the same [poly(allylamine hydrochloride), PAH; poly(sodium 4-styrenesulfonate)}, the assembly conditions and terminal layer were found to strongly influence sensor behavior. Specifically, without added salt in assembly conditions, glucose diffusion was significantly decreased when films were capped with PAH, resulting in reduced sensitivity and extended range of response. With added salt, however, sensor response was the same for films of the same thickness but different terminal materials. These findings demonstrate that sensor response may be customized to cover the hypo- (0-80 mg/dL), normo- (80-120 mg/dL), and hyperglycemic levels (>120 mg/dL) from a single batch of particles through appropriate selection of coating structure and assembly conditions. Furthermore, the results indicate nanofilms of only 12-nm thickness could significantly affect response behavior, confirming predicted behavior by models of sensor reaction-diffusion kinetics. These findings demonstrate the ability to engineer sensor response properties using a simple, cost-effective means and lay the groundwork for developing additional highly sensitive biochemical monitors.  相似文献   

7.
A fiber-optic sensor sensitive to hydrogen peroxide has been designed based on the electrostatic layer-by-layer self-assembly method. Meldola's blue and a catalyst hemin have been deposited in a polymeric structure formed by PAH+ and PAA/sup -/. The concentrations that can be detected range at least between 10/sup -7/ and 10/sup -1/ M, and recovery of the sensor after introduction in a reductive agent has been proved successfully. Some rules for estimation of the refractive index of the material deposited and the thickness of bilayers are also given.  相似文献   

8.
Polyelectrolyte multilayers comprised of poly(allylamine hydrochloride) and poly(acrylic acid) were assembled by layer-by-layer technique for metal nanoparticle syntheses. Using weak polyelectrolytes in LbL process, it is readily available to tune the deposited film properties by simple changing of the dipping solution pH. The PAH/PAA multilayer systems exhibit different surface morphologies and functionalities depending on the assembly conditions. We have studied two distinctive PAH/PAA multilayer films to utilize them for nanoparticle synthesis. The reactive functional groups of the polyelectrolytes within the films were remained after the film deposition or reactivated by a simple pH stimulus, and therefore they were allowed to undergo further chemical reactions to synthesize Pd and Au nanoparticles. Synthesized metal nanoparticles were easily characterized by their optical properties including surface plasmon absorption. These metal nanoparticle-embedded multilayers may have great potentials for biomolecule sensing or catalytically active coatings.  相似文献   

9.
The solvatochromic dye Nile Red dispersed in selected hydrogen bond acidic polymer matrixes demonstrated strong fluorescence enhancement at the presence of dimethyl methylphosphonate (DMMP) vapors. Two hydrogen bond acidic polymers were examined as dye matrixes, one with fluorinated alcohol groups on a polystyrene backbone (PSFA) and the other with fluorinated bisphenol groups alternating with oligo(dimethylsiloxane) segments (BSP3). The combination of hydrogen bond acidic polymer (a strong sorbent for DMMP) with the solvatochromic dye led to initial depression of the dye fluorescence and a significant red shift in the absorbance and fluorescence spectra. DMMP sorption changed the dye environment and dramatically altered the fluorescence spectrum and intensity, resulting in a strong fluorescence enhancement. It is proposed that this fluorescence enhancement is due to the competition set up between the dye and the sorbed vapor for polymeric hydrogen-bonding sites. The highest responses were obtained with BSP3. DMMP detection has been demonstrated at sub-ppm DMMP concentrations, indicating very low detection limits compared to previous Nile Red/polymer matrix fluorescence vapor sensors. Nile Red/poly(methyl methacrylate) films prepared for comparisons exhibited substantially lower response to DMMP. Rational selection of polymers providing high sorption for DMMP and competition for hydrogen-bonding interactions with Nile Red yielded flourescent films with high sensitivity.  相似文献   

10.
A novel amperometric glucose biosensor based on multilayer films containing chitosan, multi-wall carbon nanotubes (MWCNTs) and glucose oxidase (GOD) was developed. MWCNTs were solubilized in chitosan (Chit-MWCNTs) used to interact with GOD. Poly (allylamine) (PAA) and polyvinylsulfuric acid potassium salt (PVS) were alternately deposited on the cleaned Pt electrode surface ((PVS/PAA)3/Pt). The (PVS/PAA)3/Pt electrode was alternately immersed in Chit-MWCNTs and GOD to assemble different layers of multilayer films. PBS washing was applied at the end of each assembly deposition for dissociating the weak adsorption. Micrographs of MWCNTs were obtained by scanning electron microscope, and properties of the resulting biosensors were measured by electrochemical measurements. Among the resulting biosensors, the biosensor based on eight layers of multilayer films was best. The resulting biosensor was able to efficiently monitor glucose, with the response time within 8 s, a detection limit of 21 μM estimated at a signal-to-noise ratio of 3, a linear range of 1–10 mM, the sensitivity of 0.45 μA/mM, and well stability. The study can provide a feasible simple approach on developing a new immobilization matrix for biosensors and surface functionalization.  相似文献   

11.
A relative humidity sensor based on the deposition of electrostatic self-assembled alumina ( $hbox{Al}_{2}hbox{O}_{3}$) and poly(sodium 4-styrenesulfonate) on the cladding of a long-period fiber grating (LPFG) has been designed. The sensitive material has a lower refractive index than that of the fiber cladding, which limits the sensitivity of the LPFG response. In order to enhance its sensitivity, a previous high refractive index coating has been deposited. The overlay thickness is of the order of magnitude of the light wavelength used to interrogate the sensor. A theoretical model of multilayer cylindrical waveguides based on coupled-mode theory has been used to predict the phenomenon. Experimentally, an increased wavelength shift of the attenuation bands (75%) was obtained during the fabrication of the sensor, and, what is more important, the sensitivity was improved by a ratio of almost four. The proposed method improves the performance of LPFG-based sensors characterized by overlays of low refractive index.   相似文献   

12.
Heat-induced cross-linking of poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) films was studied as a potential method for controlling the rate of release of an absorbed dye, methylene blue (MB), from the film. Alternating layers of PAA and PAH films were prepared, loaded with MB and cured at different temperatures/times. Our studies identified the conditions best controlling both the amount of MB loading and its rate of release from PAA/PAH films to be curing at 150 °C for 10 min. In general, curing temperatures both above and below 150 °C showed slower rates of release as well as lower amounts of MB loading.  相似文献   

13.
Porous anodic oxide films on aluminium formed in phosphoric acid (PAA) have been characterized nondestructively by spectroscopic ellipsometry. Compared to previous studies on porous films formed in sulfuric acid, the optical behaviour of PAA films reveals new features which have been attributed to film-substrate interface roughness and optical anisotropy effects. On one hand relatively large interface roughness has been simulated by a graded index model. On the other hand, the implementation of uniaxial anisotropy in the optical model of the PAA film enables to interpret spectroscopic ellipsometry data acquired at multiple angles of incidence in terms of the morphology of the films. More specifically, accurate and physically realistic values are found for the porosity and porous film thickness. Although more difficult to interpret from the optical findings, the thickness of the barrier part of the porous film can also be estimated. The ellipsometry characterizations are confirmed by complementary TEM analysis of various films. Finally, the anisotropy exhibited by the PAA films is in line with recent theoretical predictions of the optical behaviour of arrays of parallel cylindrical capillaries in an isotropic medium proposed by other authors.  相似文献   

14.
The applicability and performance of linear solvation energy relationships (LSERs) as models of responses from polymer-coated acoustic-wave vapor sensors are critically examined. Criteria for the use of these thermodynamic models with thickness-shear-mode resonator (TSMR) and surface-acoustic-wave (SAW) vapor sensors are clarified. Published partition coefficient values derived from gas-liquid chromatography (GLC) are found to be consistently lower than those obtained gravimetrically, in accordance with previous reports, suggesting that LSERs based on GLC-derived partition coefficients will not provide accurate estimates of acoustic-wave sensor responses. The development of LSER models directly from polymer-coated TSMR vapor sensor response data is demonstrated and a revised model developed from SAW vapor sensor response data, which takes account of viscoelastic changes in polymeric coating films, is presented and compared to those developed by other methods.  相似文献   

15.
Electrochemical sensing based on redox mediation at carbon nanotubes   总被引:1,自引:0,他引:1  
Zhang M  Gorski W 《Analytical chemistry》2005,77(13):3960-3965
An electrochemical sensing platform was developed based on the integration of redox mediators and carbon nanotubes (CNT) in a polymeric matrix. To demonstrate the concept, a redox mediator Azure dye (AZU) was covalently attached to polysaccharide chains of chitosan (CHIT) and interspersed with CNT to form composite films for the amperometric determination of beta-nicotinamide adenine dinucleotide (NADH). The incorporation of CNT into CHIT-AZU matrix facilitated the AZU-mediated electrooxidation of NADH. In particular, CNT decreased the overpotential for the mediated process by an extra 0.30 V and amplified the NADH current by approximately 35 times (at -0.10 V) while reducing the response time from approximately 70 s for CHIT-AZU to approximately 5 s for CHIT-AZU/CNT films. These effects were discussed in terms of the AZU/CNT synergy, which improved charge propagation through the CHIT-AZU/CNT matrix. The concept of CNT-facilitated redox mediation in polymeric matrixes has a potential to be of general interest for expediting redox processes in electrochemical devices such as sensors, biosensors, and biological fuel cells and reactors.  相似文献   

16.
An approach for creating a flexible and macroporous silsesquioxane film using phase separation method is described. The porous film was prepared by a simple coating method where sol-gel solution containing polyacrylic acid (PAA) and 1,6-bis(trimethoxysilyl)hexane in water was applied on boehmite silica coated polymethylmethacrylate (PMMA) film. After drying, the water soluble PAA template was removed by washing the film with water revealing the porous film. With certain ratios of PAA and water, fully co-continuous pore system with open surface was obtained. Porous films with 3-4 μm thickness were found to be highly flexible. The biocompatibility of the porous film was tested by immobilizing a high affinity biotin-binding chimeric avidin (ChiAVD(I117Y)) into the porous matrix The porous film was found to adsorb higher amounts of functional chimeric avidin compared to the pure PMMA film or a boehmite silica coated PMMA film.  相似文献   

17.
The in vitro analytical performance of fluorescence-based oxygen sensing polymeric films prepared with silicone rubbers that spontaneously release nitric oxide (NO) is examined. The use of NO-release polymers for fabricating functional optical sensors is proposed as a potential solution to fingering biocompatibility and concomitant performance problems encountered with prototype intravascular optical oxygen sensors. Plasticized silicone rubber films formulated with two distinct types of diazeniumdiolate NO donors release NO for more than 24 h. The optical oxygen sensing films prepared by doping these NO release polymeric materials with oxygen indicators (pyrene/perylene donor/acceptor pair) display different analytical responses, as compared to controls without NO release capability. Nonlinear Stern-Volmer behavior is observed for single-layer NO release oxygen sensors owing to heterogeneous environments for the pyrene/perylene pair and a concomitant quenching of the fluorescence by excess amine sites in such films. In contrast, a dual-layer configuration using an underlying NO-release silicone rubber layer covered with a second polymeric layer containing the fluorescent indicators is shown to yield identical sensitivity and linearity toward oxygen as conventional non-NO-releasing oxygen sensing films, while still providing surface NO fluxes necessary to yield more thromboresistive devices.  相似文献   

18.
A novel integrated acoustic gas and temperature sensor   总被引:3,自引:0,他引:3  
Acoustic temperature sensors have the advantages of a high-resolution frequency output and ease of integration with other acoustic sensors but require hermetic packaging to prevent sensor contamination. Surface-skimming bulk-wave (SSBW) devices have been found to be much less sensitive to surface contamination than other acoustic devices, and although their temperature response has been studied extensively, they have not been studied specifically as temperature sensors. Surface acoustic wave (SAW) based chemical sensors requiring temperature measurement or control are susceptible to temperature measurement error because the temperature cannot be measured in the same location as the chemical sensor. The objectives of this work were to examine the temperature characteristics and performance of a SSBW temperature sensor when integrated with a SAW condensation and humidity sensor in a novel design. The SSBW temperature sensor had over an order of magnitude less sensitivity to condensation and water uptake in certain polyimide films than an integrated SAW gas sensor indicating that this design is practical for sensing films in the delay path where film thickness is carefully considered.  相似文献   

19.
Polypyrrole (PPy) and polypyrrole/Prussian blue (PPy–PB) nanocomposite-based fiber optic gas sensors are developed for gas sensing application. Prussian blue (PB) nanocubes are successfully grown on polypyrrole (PPy) nanoparticles by in situ oxidative polymerization method to obtain PPy–PB nanocomposite. PPy and PPy–PB are evaluated based on structural, morphological and electrical properties. The characteristic peaks present in the FTIR spectra of pure PPy and PB nanoparticles are also present in the FTIR spectrum of PPy–PB nanocomposite with small shifts in the absorption maximum. The XRD pattern reveals the semicrystalline structure of PPy–PB nanocomposite with an average crystallite size of 22 nm, and the morphology (FESEM) shows the formation of PB nanocubes over PPy matrix. AC conductivity measurements show slight improvement in the conductivity value of PPy–PB in comparison with PPy. Dielectric studies in the frequency range of 50 Hz–5 MHz reveal that PPy–PB nanocomposite is a high-k dielectric material. At 50 Hz, PPy–PB exhibits high dielectric constants of 1149 and 766 with low dielectric loss values of 9.9 and 4.6 at 150 and 120 °C, respectively. Further, their application as fiber optic gas sensors in sensing various gases is studied using fiber optic technique. The spectral response is studied for various concentrations (0–500 ppm) of ammonia, acetone and ethanol gases at room temperature. The study shows that the spectral intensity increases linearly with different concentrations of all gases. The clad-modified fiber optic sensor with PPy–PB nanocomposite exhibits enhanced sensitivity for ethanol than clad-modified fiber optic sensor with PPy nanoparticles. TGA studies reveal the high thermal stability of PPy–PB nanocomposite. Hence, PPy–PB-based fiber optic sensors can be used to sense toxic ethanol vapor not only at room temperature but also in a composite environment where a temperature variation is expected.  相似文献   

20.
The correlations between the structures and gas-sensing properties of porous thin-film gas sensors made of packed hollow spheres are investigated. For this purpose, hollow polymeric spheres were used as templates. Double-shell hollow spheres were prepared by encapsulating the polymeric hollow spheres with TiO2 shells. Solid polymeric spheres were used as templates for comparison. Porous thin-film gas sensor with interconnected three-dimensional pores was prepared by using the TiO2 encapsulated hollow spheres. The double-shell hollow spheres and porous titania films were characterized by XRD, BET, TEM and SEM. The gas-sensing properties of the sensors toward NO2 depend on the type of template and the three-dimensional porous structure of the films. Using the hollow sphere template and adding precursors during the film formation procedure help to prevent the collapse of hollow sphere and form the mesopores in films after removing the template. These films show enhanced gas sensitivity when compared to TiO2 polycrystalline films. Such improvement in sensitivity results from the porous architecture of the hollow microsphere films which not only increase the active surface area but also promotes the gas diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号